Accounting for heterogeneity due to environmental sources in meta-analysis of genome-wide association studies

被引:1
作者
Wang, Siru [1 ]
Ojewunmi, Oyesola O. [2 ]
Kamiza, Abram [3 ,4 ,5 ]
Ramsay, Michele [3 ]
Morris, Andrew P. [6 ]
Chikowore, Tinashe [7 ,8 ,9 ]
Fatumo, Segun [2 ,4 ,10 ]
Asimit, Jennifer L. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London, England
[3] Univ Witwatersrand, Sydney Brenner Inst Mol Biosci, Fac Hlth Sci, Johannesburg, South Africa
[4] MRC UVRI & LSHTM, African Computat Genom TACG Res Grp, Entebbe, Uganda
[5] Malawi Epidemiol & Intervent Res Unit, Lilongwe, Malawi
[6] Univ Manchester, Ctr Genet & Genom Versus Arthrit, Ctr Musculoskeletal Res, Manchester, England
[7] Univ Witwatersrand, Fac Hlth Sci, Dept Paediat, MRC Wits Dev Pathways Hlth Res Unit, Johannesburg, South Africa
[8] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[9] Harvard Med Sch, Boston, MA USA
[10] Queen Mary Univ London, Precis Healthcare Univ Res Inst, London, England
基金
英国医学研究理事会;
关键词
DENSITY-LIPOPROTEIN CHOLESTEROL; DISCOVERY; LOCI; UNCERTAINTY; VARIANTS; RISK;
D O I
10.1038/s42003-024-07236-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-analysis of genome-wide association studies (GWAS) across diverse populations offers power gains to identify loci associated with complex traits and diseases. Often heterogeneity in effect sizes across populations will be correlated with genetic ancestry and environmental exposures (e.g. lifestyle factors). We present an environment-adjusted meta-regression model (env-MR-MEGA) to detect genetic associations by adjusting for and quantifying environmental and ancestral heterogeneity between populations. In simulations, env-MR-MEGA has similar or greater association power than MR-MEGA, with notable gains when the environmental factor has a greater correlation with the trait than ancestry. In our analysis of low-density lipoprotein cholesterol in similar to 19,000 individuals across twelve sex-stratified GWAS from Africa, adjusting for sex, BMI, and urban status, we identify additional heterogeneity beyond ancestral effects for seven variants. Env-MR-MEGA provides an approach to account for environmental effects using summary-level data, making it a useful tool for meta-analyses without the need to share individual-level data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia
    Berndt, Sonja I.
    Camp, Nicola J.
    Skibola, Christine F.
    Vijai, Joseph
    Wang, Zhaoming
    Gu, Jian
    Nieters, Alexandra
    Kelly, Rachel S.
    Smedby, Karin E.
    Monnereau, Alain
    Cozen, Wendy
    Cox, Angela
    Wang, Sophia S.
    Lan, Qing
    Teras, Lauren R.
    Machado, Moara
    Yeager, Meredith
    Brooks-Wilson, Angela R.
    Hartge, Patricia
    Purdue, Mark P.
    Birmann, Brenda M.
    Vajdic, Claire M.
    Cocco, Pierluigi
    Zhang, Yawei
    Giles, Graham G.
    Zeleniuch-Jacquotte, Anne
    Lawrence, Charles
    Montalvan, Rebecca
    Burdett, Laurie
    Hutchinson, Amy
    Ye, Yuanqing
    Call, Timothy G.
    Shanafelt, Tait D.
    Novak, Anne J.
    Kay, Neil E.
    Liebow, Mark
    Cunningham, Julie M.
    Allmer, Cristine
    Hjalgrim, Henrik
    Adami, Hans-Olov
    Melbye, Mads
    Glimelius, Bengt
    Chang, Ellen T.
    Glenn, Martha
    Curtin, Karen
    Cannon-Albright, Lisa A.
    Diver, W. Ryan
    Link, Brian K.
    Weiner, George J.
    Conde, Lucia
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [22] A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly
    Chouraki, V.
    De Bruijn, R. F. A. G.
    Chapuis, J.
    Bis, J. C.
    Reitz, C.
    Schraen, S.
    Ibrahim-Verbaas, C. A.
    Grenier-Boley, B.
    Delay, C.
    Rogers, R.
    Demiautte, F.
    Mounier, A.
    Fitzpatrick, A. L.
    Berr, C.
    Dartigues, J-F
    Uitterlinden, A. G.
    Hofman, A.
    Breteler, M.
    Becker, J. T.
    Lathrop, M.
    Schupf, N.
    Alperovitch, A.
    Mayeux, R.
    van Duijn, C. M.
    Buee, L.
    Amouyel, P.
    Lopez, O. L.
    Ikram, M. A.
    Tzourio, C.
    Lambert, J-C
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (12) : 1326 - 1335
  • [23] A genome-wide association meta-analysis on apolipoprotein A-IV concentrations
    Lamina, Claudia
    Friedel, Salome
    Coassin, Stefan
    Rueedi, Rico
    Yousri, Noha A.
    Seppala, Ilkka
    Gieger, Christian
    Schoenherr, Sebastian
    Forer, Lukas
    Erhart, Gertraud
    Kollerits, Barbara
    Marques-Vidal, Pedro
    Ried, Janina
    Waeber, Gerard
    Bergmann, Sven
    Daehnhardt, Doreen
    Stoeckl, Andrea
    Kiechl, Stefan
    Raitakari, Olli T.
    Kahonen, Mika
    Willeit, Johann
    Kedenko, Ludmilla
    Paulweber, Bernhard
    Peters, Annette
    Meitinger, Thomas
    Strauch, Konstantin
    Lehtimaki, Terho
    Hunt, Steven C.
    Vollenweider, Peter
    Kronenberg, Florian
    [J]. HUMAN MOLECULAR GENETICS, 2016, 25 (16) : 3635 - 3646
  • [24] Accounting for selection and correlation in the analysis of two-stage genome-wide association studies
    Robertson, David S.
    Prevost, A. Toby
    Bowden, Jack
    [J]. BIOSTATISTICS, 2016, 17 (04) : 634 - 649
  • [25] Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of Genome-wide Association Studies
    Han, Buhm
    Eskin, Eleazar
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 88 (05) : 586 - 598
  • [26] Increasing the power of meta-analysis of genome-wide association studies to detect heterogeneous effects
    Lee, C. H.
    Eskin, E.
    Han, B.
    [J]. BIOINFORMATICS, 2017, 33 (14) : I379 - I388
  • [27] Replication of 6 Obesity Genes in a Meta-Analysis of Genome-Wide Association Studies from Diverse Ancestries
    Tan, Li-Jun
    Zhu, Hu
    He, Hao
    Wu, Ke-Hao
    Li, Jian
    Chen, Xiang-Ding
    Zhang, Ji-Gang
    Shen, Hui
    Tian, Qing
    Krousel-Wood, Marie
    Papasian, Christopher J.
    Bouchard, Claude
    Perusse, Louis
    Deng, Hong-Wen
    [J]. PLOS ONE, 2014, 9 (05):
  • [28] Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease
    Tang, Clara Sze-man
    Gui, Hongsheng
    Kapoor, Ashish
    Kim, Jeong-Hyun
    Luzon-Toro, Berta
    Pelet, Anna
    Burzynski, Grzegorz
    Lantieri, Francesca
    So, Man-ting
    Berrios, Courtney
    Shin, Hyoung Doo
    Fernandez, Raquel M.
    Le, Thuy-Linh
    Verheij, Joke B. G. M.
    Matera, Ivana
    Cherny, Stacey S.
    Nandakumar, Priyanka
    Cheong, Hyun Sub
    Antinolo, Guillermo
    Amiel, Jeanne
    Seo, Jeong-Meen
    Kim, Dae-Yeon
    Oh, Jung-Tak
    Lyonnet, Stanislas
    Borrego, Salud
    Ceccherini, Isabella
    Hofstra, Robert M. W.
    Chakravarti, Aravinda
    Kim, Hyun-Young
    Sham, Pak Chung
    Tam, Paul K. H.
    Garcia-Barcelo, Maria-Merce
    [J]. HUMAN MOLECULAR GENETICS, 2016, 25 (23) : 5265 - 5275
  • [29] Model-based assessment of replicability for genome-wide association meta-analysis
    McGuire, Daniel
    Jiang, Yu
    Liu, Mengzhen
    Weissenkampen, J. Dylan
    Eckert, Scott
    Yang, Lina
    Chen, Fang
    Berg, Arthur
    Vrieze, Scott
    Jiang, Bibo
    Li, Qunhua
    Liu, Dajiang J.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [30] A meta-analysis of genome-wide studies of resilience in the German population
    Herrera-Rivero, Marisol
    Garvert, Linda
    Horn, Katrin
    Loebner, Margrit
    Weitzel, Elena Caroline
    Stoll, Monika
    Lichtner, Peter
    Teismann, Henning
    Teumer, Alexander
    van der Auwera, Sandra
    Voelzke, Henry
    Voelker, Uwe
    Andlauer, Till F. M.
    Meinert, Susanne
    Heilmann-Heimbach, Stefanie
    Forstner, Andreas J.
    Streit, Fabian
    Witt, Stephanie H.
    Kircher, Tilo
    Dannlowski, Udo
    Scholz, Markus
    Riedel-Heller, Steffi G.
    Grabe, Hans J.
    Baune, Bernhard T.
    Berger, Klaus
    [J]. MOLECULAR PSYCHIATRY, 2025, 30 (02) : 497 - 505