Accounting for heterogeneity due to environmental sources in meta-analysis of genome-wide association studies

被引:0
|
作者
Wang, Siru [1 ]
Ojewunmi, Oyesola O. [2 ]
Kamiza, Abram [3 ,4 ,5 ]
Ramsay, Michele [3 ]
Morris, Andrew P. [6 ]
Chikowore, Tinashe [7 ,8 ,9 ]
Fatumo, Segun [2 ,4 ,10 ]
Asimit, Jennifer L. [1 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London, England
[3] Univ Witwatersrand, Sydney Brenner Inst Mol Biosci, Fac Hlth Sci, Johannesburg, South Africa
[4] MRC UVRI & LSHTM, African Computat Genom TACG Res Grp, Entebbe, Uganda
[5] Malawi Epidemiol & Intervent Res Unit, Lilongwe, Malawi
[6] Univ Manchester, Ctr Genet & Genom Versus Arthrit, Ctr Musculoskeletal Res, Manchester, England
[7] Univ Witwatersrand, Fac Hlth Sci, Dept Paediat, MRC Wits Dev Pathways Hlth Res Unit, Johannesburg, South Africa
[8] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[9] Harvard Med Sch, Boston, MA USA
[10] Queen Mary Univ London, Precis Healthcare Univ Res Inst, London, England
基金
英国医学研究理事会;
关键词
DENSITY-LIPOPROTEIN CHOLESTEROL; DISCOVERY; LOCI; UNCERTAINTY; VARIANTS; RISK;
D O I
10.1038/s42003-024-07236-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-analysis of genome-wide association studies (GWAS) across diverse populations offers power gains to identify loci associated with complex traits and diseases. Often heterogeneity in effect sizes across populations will be correlated with genetic ancestry and environmental exposures (e.g. lifestyle factors). We present an environment-adjusted meta-regression model (env-MR-MEGA) to detect genetic associations by adjusting for and quantifying environmental and ancestral heterogeneity between populations. In simulations, env-MR-MEGA has similar or greater association power than MR-MEGA, with notable gains when the environmental factor has a greater correlation with the trait than ancestry. In our analysis of low-density lipoprotein cholesterol in similar to 19,000 individuals across twelve sex-stratified GWAS from Africa, adjusting for sex, BMI, and urban status, we identify additional heterogeneity beyond ancestral effects for seven variants. Env-MR-MEGA provides an approach to account for environmental effects using summary-level data, making it a useful tool for meta-analyses without the need to share individual-level data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Meta-analysis in genome-wide association studies
    Zeggini, E.
    Ioannidis, J. P. A.
    PHARMACOGENOMICS, 2009, 10 (02) : 191 - 201
  • [2] On individual genome-wide association studies and their meta-analysis
    Pei, Yu-Fang
    Zhang, Lei
    Papasian, Christopher J.
    Wang, Yu-Ping
    Deng, Hong-Wen
    HUMAN GENETICS, 2014, 133 (03) : 265 - 279
  • [3] Meta-Analysis of Genome-wide Association Studies with Overlapping Subjects
    Lin, Dan-Yu
    Sullivan, Patrick F.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 85 (06) : 862 - 872
  • [4] GWAR: robust analysis and meta-analysis of genome-wide association studies
    Dimou, Niki L.
    Tsirigos, Konstantinos D.
    Elofsson, Arne
    Bagos, Pantelis G.
    BIOINFORMATICS, 2017, 33 (10) : 1521 - 1527
  • [5] The Power of Meta-Analysis in Genome-Wide Association Studies
    Panagiotou, Orestis A.
    Willer, Cristen J.
    Hirschhorn, Joel N.
    Ioannidis, John P. A.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 14, 2013, 14 : 441 - 465
  • [6] Meta-Analysis of Sex-Specific Genome-Wide Association Studies
    Magi, Reedik
    Lindgren, Cecilia M.
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 846 - 853
  • [7] Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins
    Postmus, Iris
    Trompet, Stella
    Deshmukh, Harshal A.
    Barnes, Michael R.
    Li, Xiaohui
    Warren, Helen R.
    Chasman, Daniel I.
    Zhou, Kaixin
    Arsenault, Benoit J.
    Donnelly, Louise A.
    Wiggins, Kerri L.
    Avery, Christy L.
    Griffin, Paula
    Feng, QiPing
    Taylor, Kent D.
    Li, Guo
    Evans, Daniel S.
    Smith, Albert V.
    de Keyser, Catherine E.
    Johnson, Andrew D.
    de Craen, Anton J. M.
    Stott, David J.
    Buckley, Brendan M.
    Ford, Ian
    Westendorp, Rudi G. J.
    Slagboom, P. Eline
    Sattar, Naveed
    Munroe, Patricia B.
    Sever, Peter
    Poulter, Neil
    Stanton, Alice
    Shields, Denis C.
    O'Brien, Eoin
    Shaw-Hawkins, Sue
    Chen, Y. -D. Ida
    Nickerson, Deborah A.
    Smith, Joshua D.
    Dube, Marie Pierre
    Boekholdt, S. Matthijs
    Hovingh, G. Kees
    Kastelein, John J. P.
    McKeigue, Paul M.
    Betteridge, John
    Neil, Andrew
    Durrington, Paul N.
    Doney, Alex
    Carr, Fiona
    Morris, Andrew
    McCarthy, Mark I.
    Groop, Leif
    NATURE COMMUNICATIONS, 2014, 5
  • [8] Meta-Analysis of Genome-Wide Association Studies Reveals Genetic Mechanisms of Supraventricular Arrhythmias
    Weng, Lu-Chen
    Khurshid, Shaan
    Hall, Amelia Weber
    Nauffal, Victor
    Morrill, Valerie N.
    Sun, Yan V.
    Ramo, Joel T.
    Beer, Dominik
    Lee, Simon
    Nadkarni, Girish
    Johnson, Renee
    Andreasen, Laura
    Clayton, Anne
    Pullinger, Clive R.
    Yoneda, Zachary T.
    Friedman, Daniel J.
    Hyman, Matthew C.
    Judy, Renae L.
    Skanes, Allan C.
    Orland, Kate M.
    Jorda, Paloma
    Treu, Timothy M.
    Oetjens, Matthew T.
    Subbiah, Rajesh
    Hartmann, Jacob P.
    May, Heidi T.
    Kane, John P.
    Issa, Tariq Z.
    Nafissi, Navid A.
    Leong-Sit, Peter
    Dube, Marie-Pierre
    Roselli, Carolina
    Choi, Seung Hoan
    Tardif, Jean-Claude
    Khan, Habib R.
    Knight, Stacey
    Svendsen, Jesper H.
    Walker, Bruce
    Linner, Richard Karlsson
    Gaziano, J. Michael
    Tadros, Rafik
    Fatkin, Diane
    Rader, Daniel J.
    Shah, Svati H.
    Roden, Dan M.
    Marcus, Gregory M.
    Loos, Ruth J. F.
    Damrauer, Scott M.
    Haggerty, Christopher M.
    Cho, Kelly
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2024, 17 (03): : e004320
  • [9] Optimal Methods for Meta-Analysis of Genome-Wide Association Studies
    Zhou, Baiyu
    Shi, Jianxin
    Whittemore, Alice S.
    GENETIC EPIDEMIOLOGY, 2011, 35 (07) : 581 - 591
  • [10] Genome-wide association study of glioma and meta-analysis
    Rajaraman, Preetha
    Melin, Beatrice S.
    Wang, Zhaoming
    McKean-Cowdin, Roberta
    Michaud, Dominique S.
    Wang, Sophia S.
    Bondy, Melissa
    Houlston, Richard
    Jenkins, Robert B.
    Wrensch, Margaret
    Yeager, Meredith
    Ahlbom, Anders
    Albanes, Demetrius
    Andersson, Ulrika
    Freeman, Laura E. Beane
    Buring, Julie E.
    Butler, Mary Ann
    Braganza, Melissa
    Carreon, Tania
    Feychting, Maria
    Fleming, Sarah J.
    Gapstur, Susan M.
    Gaziano, J. Michael
    Giles, Graham G.
    Hallmans, Goran
    Henriksson, Roger
    Hoffman-Bolton, Judith
    Inskip, Peter D.
    Johansen, Christoffer
    Kitahara, Cari M.
    Lathrop, Mark
    Liu, Chenwei
    Le Marchand, Loic
    Linet, Martha S.
    Lonn, Stefan
    Peters, Ulrike
    Purdue, Mark P.
    Rothman, Nathaniel
    Ruder, Avima M.
    Sanson, Marc
    Sesso, Howard D.
    Severi, Gianluca
    Shu, Xiao-Ou
    Simon, Matthias
    Stampfer, Meir
    Stevens, Victoria L.
    Visvanathan, Kala
    White, Emily
    Wolk, Alicja
    Zeleniuch-Jacquotte, Anne
    HUMAN GENETICS, 2012, 131 (12) : 1877 - 1888