The modified q-Genocchi numbers and polynomials with applications to q-zeta functions

被引:0
作者
Bagdasaryan, Armen [1 ]
Araci, Serkan [2 ]
Agyuz, Erkan [3 ]
Acikgoz, Mehmet [3 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Dept Math, Egaila, Kuwait
[2] Hasan Kalyoncu Univ, Fac Econ Adm & Social Sci, Dept Econ, TR-27410 Gaziantep, Turkiye
[3] Gaziantep Univ, Fac Arts & Sci, Dept Math, TR-27310 Gaziantep, Turkiye
关键词
Genocchi numbers and polynomials; <italic>q</italic>-Genocchi polynomials; Generating function; Fermionic <italic>p</italic>-adic <italic>q</italic>-integral; <italic>q</italic>-Genocchi zeta function; Q-EXTENSIONS; ORDER;
D O I
10.1007/s13370-024-01225-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the modified q-Genocchi polynomials, investigate their properties, and give their generating function. We obtain a number of new relations and properties for q-Genocchi polynomials, such as addition formula, explicit formula, derivative formula, and multiplication formula. As an application, a new q-analogue of Genocchi zeta function is presented by applying the Mellin transform to the generating function of the modified q-Genocchi polynomials. Finally, we define the q-Genocchi zeta-type functions and then prove their interpolation by the modified q-Genocchi polynomials at negative integers.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
Araci S., 2012, Advanced Studies in Contemporary Mathematics, V22, P399
[2]   THEOREMS ON GENOCCHI POLYNOMIALS OF HIGHER ORDER ARISING FROM GENOCCHI BASIS [J].
Araci, Serkan ;
Sen, Erdogan ;
Acikgoz, Mehmet .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02) :473-482
[3]   On the extended Kim's p-adic q-deformed fermionic integrals in the p-adic integer ring [J].
Araci, Serkan ;
Acikgoz, Mehmet ;
Sen, Erdogan .
JOURNAL OF NUMBER THEORY, 2013, 133 (10) :3348-3361
[4]   Novel Identities for q-Genocchi Numbers and Polynomials [J].
Araci, Serkan .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[5]   An Elementary and Real Approach to Values of the Riemann Zeta Function [J].
Bagdasaryan, A. G. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) :251-254
[6]  
Cangul I. N.., 2009, Advanced Studies in Contemporary Mathematics, V19, P39
[7]  
Cenkci M, 2006, J KOREAN MATH SOC, V43, P183
[8]  
Fort T., 1948, Finite differences
[9]  
HORADAM AF, 1991, APPLICATIONS OF FIBONACCI NUMBERS, VOL 4, P145
[10]  
HORADAM AF, 1992, FIBONACCI QUART, V30, P21