On quasi-twisted codes and generalized quasi-twisted codes over Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4} +u\mathbb {Z}_{4}$$\end{document}

被引:0
作者
Ayoub Mounir [1 ]
Abdelfattah Haily [1 ]
机构
[1] Chouaib Doukkali University,Department of Mathematics, Faculty of Science
关键词
Quasi-twisted codes; Generalized quasi-twisted codes; Gray map; New Z4-linear codes; 11T71; 94B05; 94B15;
D O I
10.1007/s12095-024-00732-z
中图分类号
学科分类号
摘要
In this paper, our main objective is to examine the properties and characteristics of 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-quasi-twisted (QT) codes and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-generalized quasi-twisted (GQT) codes over the ring Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4 +u\mathbb {Z}_4 $$\end{document}, with u2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=1$$\end{document}. We determine the structure of the generators and minimal generating sets for both 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-QT and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-GQT codes. Additionally, we establish a lower bound for the minimum distance of free 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-QT and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-GQT codes over R. Furthermore, we present some numerical examples that illustrate the construction of some optimal Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-linear codes using the Gray map.
引用
收藏
页码:1491 / 1502
页数:11
相关论文
共 50 条
[41]   Quadratic residue codes over the ring 𝔽p[u]/〈um−u〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[u]/\langle u^{m}-u\rangle $\end{document} and their Gray images [J].
Mokshi Goyal ;
Madhu Raka .
Cryptography and Communications, 2018, 10 (2) :343-355
[43]   Construction of quantum codes from λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes over the ring Fp[u,v]⟨v3-v,u3-u,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\mathbb {F}_p[u,v]}{\langle v^3-v , u^3-u , uv-vu\rangle }$$\end{document} [J].
Karthick Gowdhaman ;
Cruz Mohan ;
Durairajan Chinnapillai ;
Jian Gao .
Journal of Applied Mathematics and Computing, 2021, 65 (1-2) :611-622
[44]   A family of constacyclic codes over a class of non-chain rings Aq,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{q,r}$$\end{document} and new quantum codes [J].
Habibul Islam ;
Shikha Patel ;
Om Prakash ;
Patrick Solé .
Journal of Applied Mathematics and Computing, 2022, 68 (4) :2493-2514
[45]   Quantum codes from Hermitian dual-containing constacyclic codes over Fq2+vFq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^{2}}+{v}{\mathbb {F}}_{q^{2}}$$\end{document} [J].
Yu Wang ;
Xiaoshan Kai ;
Zhonghua Sun ;
Shixin Zhu .
Quantum Information Processing, 2021, 20 (3)
[47]   New quantum codes from self-orthogonal cyclic codes over Fq2[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^{2}}[u]/\langle u^k \rangle $$\end{document} [J].
Soumak Biswas ;
Maheshanand Bhaintwal .
Quantum Information Processing, 2021, 20 (9)
[48]   Self-dual and LCD double circulant and double negacirculant codes over Fq+uFq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} [J].
Shikha Yadav ;
Habibul Islam ;
Om Prakash ;
Patrick Solé .
Journal of Applied Mathematics and Computing, 2021, 67 :689-705
[49]   Quantum codes from cyclic codes over the ring Fq+v1Fq+⋯+vrFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_r{\mathbb {F}}_q$$\end{document} [J].
Yun Gao ;
Jian Gao ;
Fang-Wei Fu .
Applicable Algebra in Engineering, Communication and Computing, 2019, 30 (2) :161-174
[50]   Application of Constacyclic Codes Over the Semi Local Ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document} [J].
Tushar Bag ;
Abdullah Dertli ;
Yasemin Cengellenmis ;
Ashish K. Upadhyay .
Indian Journal of Pure and Applied Mathematics, 2020, 51 (1) :265-275