On quasi-twisted codes and generalized quasi-twisted codes over Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4} +u\mathbb {Z}_{4}$$\end{document}

被引:0
作者
Ayoub Mounir [1 ]
Abdelfattah Haily [1 ]
机构
[1] Chouaib Doukkali University,Department of Mathematics, Faculty of Science
关键词
Quasi-twisted codes; Generalized quasi-twisted codes; Gray map; New Z4-linear codes; 11T71; 94B05; 94B15;
D O I
10.1007/s12095-024-00732-z
中图分类号
学科分类号
摘要
In this paper, our main objective is to examine the properties and characteristics of 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-quasi-twisted (QT) codes and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-generalized quasi-twisted (GQT) codes over the ring Z4+uZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4 +u\mathbb {Z}_4 $$\end{document}, with u2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=1$$\end{document}. We determine the structure of the generators and minimal generating sets for both 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-QT and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-GQT codes. Additionally, we establish a lower bound for the minimum distance of free 1-generator (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-QT and (2+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + u)$$\end{document}-GQT codes over R. Furthermore, we present some numerical examples that illustrate the construction of some optimal Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-linear codes using the Gray map.
引用
收藏
页码:1491 / 1502
页数:11
相关论文
共 50 条
[21]   Binary Optimal Codes from Z2[u]Z2[u,v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}[u]{\mathbb {Z}}_{2}[u,v]$$\end{document}-Additive Cyclic and Additive Constacyclic Codes [J].
Mohd Asim ;
Mohammad Ashraf ;
Ghulam Mohammad ;
Washiqur Rehman ;
Naim Khan .
Iranian Journal of Science, 2025, 49 (3) :697-709
[22]   Two infinite families of two-weight codes over Z2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^m}$$\end{document} [J].
Shitao Li ;
Minjia Shi .
Journal of Applied Mathematics and Computing, 2023, 69 (1) :201-218
[23]   On m-spotty weight enumerators of Z2(Z2+uZ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2(\mathbb {Z}_2+u\mathbb {Z}_2)$$\end{document}-linear codes and Griesmer type bound [J].
Soumak Biswas ;
Maheshanand Bhaintwal .
Computational and Applied Mathematics, 2022, 41 (2)
[25]   1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring Z4[u]u2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{{\mathbb {Z}_4}[u]}}{{\left\langle {{u^2} - 1}\right\rangle }}$$\end{document} [J].
Yun Gao ;
Jian Gao ;
Tingting Wu ;
Fang-Wei Fu .
Applicable Algebra in Engineering, Communication and Computing, 2017, 28 (6) :457-467
[26]   FqR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_qR$$\end{document}-linear skew constacyclic codes and their application of constructing quantum codes [J].
Juan Li ;
Jian Gao ;
Fang-Wei Fu ;
Fanghui Ma .
Quantum Information Processing, 2020, 19 (7)
[27]   Simplex and MacDonald codes over Rq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{q}$$\end{document} [J].
K. Chatouh ;
K. Guenda ;
T. A. Gulliver ;
L. Noui .
Journal of Applied Mathematics and Computing, 2017, 55 :455-478
[28]   Quantum codes from constacyclic codes over Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{k}$\end{document} [J].
Bo Kong ;
Xiying Zheng .
EPJ Quantum Technology, 2023, 10 (1)