Multi-modal deep learning approaches to semantic segmentation of mining footprints with multispectral satellite imagery

被引:0
|
作者
Saputra, Muhamad Risqi U. [1 ]
Bhaswara, Irfan Dwiki [1 ]
Nasution, Bahrul Ilmi [1 ]
Ern, Michelle Ang Li [2 ]
Husna, Nur Laily Romadhotul [1 ]
Witra, Tahjudil [1 ]
Feliren, Vicky [1 ]
Owen, John R. [3 ]
Kemp, Deanna [4 ]
Lechner, Alex M. [1 ]
机构
[1] Monash Univ Indonesia, Min Spatial Data Intelligence Res Hub, Green Off Pk 9, Tangerang Selatan 15345, Banten, Indonesia
[2] Univ Nottingham Malaysia, Sch Environm & Geog Sci, Landscape Ecol & Conservat Lab, Semenyih 43500, Malaysia
[3] Univ Free State, Ctr Dev Support, 205 Nelson Mandela Dr,Pk West, ZA-9301 Bloemfontein, South Africa
[4] Univ Queensland, Sustainable Minerals Inst, Ctr Social Responsibil Min, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Semantic segmentation; Global mining footprints; Multispectral; Deep learning; IMPACTS;
D O I
10.1016/j.rse.2024.114584
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Existing remote sensing applications in mining are often of limited scope, typically mapping multiple mining land covers for a single mine or only mapping mining extents or a single feature (e.g., tailings dam) for multiple mines across a region. Many of these works have a narrow focus on specific mine land covers rather than encompassing the variety of mining and non-mining land use in a mine site. This study presents a pioneering effort in performing deep learning-based semantic segmentation of 37 mining locations worldwide, representing a range of commodities from gold to coal, using multispectral satellite imagery, to automate mapping of mining and non-mining land covers. Due to the absence of a dedicated training dataset, we crafted a customized multispectral dataset for training and testing deep learning models, leveraging and refining existing datasets in terms of boundaries, shapes, and class labels. We trained and tested multimodal semantic segmentation models, particularly based on U-Net, DeepLabV3+, Feature Pyramid Network (FPN), SegFormer, and IBM-NASA foundational geospatial model (Prithvi) architecture, with a focus on evaluating different model configurations, input band combinations, and the effectiveness of transfer learning. In terms of multimodality, we utilized various image bands, including Red, Green, Blue, and Near Infra-Red (NIR) and Normalized Difference Vegetation Index (NDVI), to determine which combination of inputs yields the most accurate segmentation. Results indicated that among different configurations, FPN with DenseNet-121 backbone, pre-trained on ImageNet, and trained using both RGB and NIR bands, performs the best. We concluded the study with a comprehensive assessment of the model's performance based on climate classification categories and diverse mining commodities. We believe that this work lays a robust foundation for further analysis of the complex relationship between mining projects, communities, and the environment.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] DEEP SEMANTIC SEGMENTATION OF AERIAL IMAGERY BASED ON MULTI-MODAL DATA
    Chen, Kaiqiang
    Fu, Kun
    Sun, Xian
    Weinmann, Michael
    Hinz, Stefan
    Jutzi, Boris
    Weinmann, Martin
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6219 - 6222
  • [2] Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
    Justo, Jon Alvarez
    Ghita, Alexandru
    Kovac, Daniel
    Garrett, Joseph L.
    Georgescu, Mariana-Iuliana
    Gonzalez-Llorente, Jesus
    Ionescu, Radu Tudor
    Johansen, Tor Arne
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 273 - 293
  • [3] Multi-modal semantic image segmentation
    Pemasiri, Akila
    Kien Nguyen
    Sridharan, Sridha
    Fookes, Clinton
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 202
  • [4] Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
    Kemker, Ronald
    Salvaggio, Carl
    Kanan, Christopher
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 60 - 77
  • [5] Imagery in multi-modal object learning
    Jüttner, M
    Rentschler, I
    BEHAVIORAL AND BRAIN SCIENCES, 2002, 25 (02) : 197 - +
  • [6] EFFECTIVE FUSION OF MULTI-MODAL DATA WITH GROUP CONVOLUTIONS FOR SEMANTIC SEGMENTATION OF AERIAL IMAGERY
    Chen, Kaiqiang
    Fu, Kun
    Gao, Xin
    Yan, Menglong
    Zhang, Wenkai
    Zhang, Yue
    Sun, Xian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3911 - 3914
  • [7] A Learning Strategy for Amazon Deforestation Estimations Using Multi-Modal Satellite Imagery
    Lee, Dongoo
    Choi, Yeonju
    REMOTE SENSING, 2023, 15 (21)
  • [8] CLOUDSEGNET: A DEEP LEARNING BASED SEGMENTATION METHOD FOR CLOUD DETECTION IN MULTISPECTRAL SATELLITE IMAGERY
    Kaushik, Manoj
    Sarma, Anagha S.
    Nidamanuri, Rama Rao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3827 - 3829
  • [9] Multi-modal body part segmentation of infants using deep learning
    Voss, Florian
    Brechmann, Noah
    Lyra, Simon
    Rixen, Joeran
    Leonhardt, Steffen
    Antink, Christoph Hoog
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [10] OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images
    Chen, Yu
    Chen, Jiawei
    Wei, Dong
    Li, Yuexiang
    Zheng, Yefeng
    MULTISCALE MULTIMODAL MEDICAL IMAGING, MMMI 2019, 2020, 11977 : 17 - 25