Boundedness of Dyadic Maximal Operators on Musielak-Orlicz Type Spaces and Its Applications

被引:0
作者
Weisz, Ferenc [1 ]
Xie, Guangheng [2 ]
Yang, Dachun [3 ]
机构
[1] Eotovos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410075, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Dyadic maximal operator; Musielak-Orlicz space; Martingale Hardy space; Doob maximal operator; Fej & eacute; r means; MARTINGALE HARDY-SPACES; CESARO SUMMABILITY; LEBESGUE SPACES; WALSH; INEQUALITIES; CONVERGENCE; TRANSFORMS; RESPECT; SERIES; DOOBS;
D O I
10.1007/s12220-025-01923-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi:[0,1)x[0,infinity)->[0,infinity]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :\ [0,1)\times [0,\infty )\rightarrow [0,\infty ]$$\end{document} be a Musielak-Orlicz function and gamma,s is an element of(0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ,s\in (0,\infty )$$\end{document}. In this article, the authors present some sufficient conditions to ensure that the dyadic maximal operator U gamma,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\gamma ,s}$$\end{document} is bounded on Musielak-Orlicz spaces L phi[0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\varphi }[0,1).$$\end{document} As applications, the authors establish the characterizations of Musielak-Orlicz Hardy spaces H phi[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi }[0,1)$$\end{document} and the boundedness of maximal Fej & eacute;r operators from H phi[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi }[0,1)$$\end{document} to L phi[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\varphi }[0,1)$$\end{document}. Furthermore, the almost everywhere convergence and the norm convergence of Fej & eacute;r means of Walsh-Fourier series are also obtained. All these results include, as special cases, the essentially optimal conditions for variable exponent Lebesgue spaces, perturbed variable exponent Lebesgue spaces, and double-phase functionals with variable exponent Lebesgue spaces.
引用
收藏
页数:40
相关论文
共 75 条
[1]   Lebesgue spaces with variable exponent on a probability space [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) :207-216
[2]  
Baramidze D, 2023, MEDITERR J MATH, V20, DOI 10.1007/s00009-023-02479-y
[3]   Martingale Hardy Spaces and Some New Weighted Maximal Operators of Fejer Means of Walsh-Fourier Series [J].
Baramidze, Davit ;
Blahota, Istvan ;
Tephnadze, George ;
Toledo, Rodolfo .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
[4]   Some new restricted maximal operators of Fejér means of Walsh-Fourier series [J].
Baramidze, Davit ;
Baramidze, Lasha ;
Perssson, Lars-Erik ;
Tephnadze, George .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
[6]   Approximation by Subsequences of Matrix Transform Means of Some Two-Dimensional Rectangle Walsh-Fourier Series [J].
Blahota, Istvan ;
Gat, Gyorgy .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (05)
[7]   A modular variable Orlicz inequality for the local maximal operator [J].
Capone, Claudia ;
Cruz-Uribe, David ;
Fiorenza, Alberto .
GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) :201-206
[8]   ON CONVERGENCE AND GROWTH OF PARTIAL SUMS OF FOURIER SERIES [J].
CARLESON, L .
ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2) :135-&
[9]   Sobolev embeddings in Musielak-Orlicz spaces [J].
Cianchi, Andrea ;
Diening, Lars .
ADVANCES IN MATHEMATICS, 2024, 447
[10]   A new class of double phase variable exponent problems: Existence and uniqueness [J].
Crespo-Blanco, Angel ;
Gasinski, Leszek ;
Harjulehto, Petteri ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 :182-228