Scattering for the fractional magnetic Schrödinger operators

被引:0
|
作者
Wei, Lei [1 ]
Duan, Zhiwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
magnetic Schr & ouml; dinger operators; fractional; scattering; distorted Fourier transform; SCHRODINGER-OPERATORS; STRICHARTZ; POTENTIALS; LAPLACIAN;
D O I
10.1007/s10473-024-0618-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of the scattering operator for the fractional magnetic Schr & ouml;dinger operators. In order to do this, we construct the fractional distorted Fourier transforms with magnetic potentials. Applying the properties of the distorted Fourier transforms, the existence and the asymptotic completeness of the wave operators are obtained. Furthermore, we prove the absence of positive eigenvalues for fractional magnetic Schr & ouml;dinger operators.
引用
收藏
页码:2391 / 2410
页数:20
相关论文
共 50 条
  • [41] Weighted Spectral Gap for Magnetic Schrödinger Operators with a Potential Term
    M. Enstedt
    K. Tintarev
    Potential Analysis, 2009, 31 : 215 - 226
  • [42] Self-Adjoint Extensions of Discrete Magnetic Schrödinger Operators
    Ognjen Milatovic
    Françoise Truc
    Annales Henri Poincaré, 2014, 15 : 917 - 936
  • [43] Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields
    Yuri A. Kordyukov
    Communications in Mathematical Physics, 2005, 253 : 371 - 384
  • [44] Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries
    Katya Krupchyk
    Gunther Uhlmann
    Communications in Mathematical Physics, 2018, 361 : 525 - 582
  • [45] The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields
    Shin-ichi Doi
    Akira Iwatsuka
    Takuya Mine
    Mathematische Zeitschrift, 2001, 237 : 335 - 371
  • [46] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [47] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [48] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [49] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [50] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418