Scattering for the fractional magnetic Schrödinger operators

被引:0
|
作者
Wei, Lei [1 ]
Duan, Zhiwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
magnetic Schr & ouml; dinger operators; fractional; scattering; distorted Fourier transform; SCHRODINGER-OPERATORS; STRICHARTZ; POTENTIALS; LAPLACIAN;
D O I
10.1007/s10473-024-0618-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of the scattering operator for the fractional magnetic Schr & ouml;dinger operators. In order to do this, we construct the fractional distorted Fourier transforms with magnetic potentials. Applying the properties of the distorted Fourier transforms, the existence and the asymptotic completeness of the wave operators are obtained. Furthermore, we prove the absence of positive eigenvalues for fractional magnetic Schr & ouml;dinger operators.
引用
收藏
页码:2391 / 2410
页数:20
相关论文
共 50 条
  • [21] Correction to: Inverse Scattering for Schrödinger Operators on Perturbed Lattices
    Kazunori Ando
    Hiroshi Isozaki
    Hisashi Morioka
    Annales Henri Poincaré, 2019, 20 : 337 - 338
  • [22] Inverse Scattering at Fixed Energy for Radial Magnetic Schrödinger Operators with Obstacle in Dimension Two
    Damien Gobin
    Annales Henri Poincaré, 2018, 19 : 3089 - 3128
  • [23] Boundedness of fractional heat semigroups generated by degenerate Schrödinger operators
    Zhiyong Wang
    Pengtao Li
    Yu Liu
    Analysis and Mathematical Physics, 2023, 13
  • [24] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [25] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [26] Semiclassical asymptotics and gaps in the spectra of magnetic Schrödinger operators
    Mathai V.
    Shubin M.
    Geometriae Dedicata, 2002, 91 (1) : 155 - 173
  • [27] Schrödinger operators with magnetic fields and minimal action functionals
    Gabriel P. Paternain
    Israel Journal of Mathematics, 2001, 123 : 1 - 27
  • [28] On Eigenfunction Decay for Two Dimensional¶Magnetic Schrödinger Operators
    H. D. Cornean
    G. Nenciu
    Communications in Mathematical Physics, 1998, 192 : 671 - 685
  • [29] A Feynman–Kac–Itô formula for magnetic Schrödinger operators on graphs
    Batu Güneysu
    Matthias Keller
    Marcel Schmidt
    Probability Theory and Related Fields, 2016, 165 : 365 - 399
  • [30] On Spectral Properties of Translationally Invariant Magnetic Schrödinger Operators
    Dimitri Yafaev
    Annales Henri Poincaré, 2008, 9 : 181 - 207