Scattering for the fractional magnetic Schrödinger operators

被引:0
|
作者
Wei, Lei [1 ]
Duan, Zhiwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
magnetic Schr & ouml; dinger operators; fractional; scattering; distorted Fourier transform; SCHRODINGER-OPERATORS; STRICHARTZ; POTENTIALS; LAPLACIAN;
D O I
10.1007/s10473-024-0618-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of the scattering operator for the fractional magnetic Schr & ouml;dinger operators. In order to do this, we construct the fractional distorted Fourier transforms with magnetic potentials. Applying the properties of the distorted Fourier transforms, the existence and the asymptotic completeness of the wave operators are obtained. Furthermore, we prove the absence of positive eigenvalues for fractional magnetic Schr & ouml;dinger operators.
引用
收藏
页码:2391 / 2410
页数:20
相关论文
共 50 条
  • [1] SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS
    魏磊
    段志文
    Acta Mathematica Scientia, 2024, 44 (06) : 2391 - 2410
  • [2] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [3] Scattering for Schrödinger operators with conical decay
    Black, Adam
    Malinovitch, Tal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (07)
  • [4] Observability Results Related to Fractional Schrödinger Operators
    Fabricio Macià
    Vietnam Journal of Mathematics, 2021, 49 : 919 - 936
  • [5] Existence of the Gauge for Fractional Laplacian Schrödinger Operators
    Michael W. Frazier
    Igor E. Verbitsky
    The Journal of Geometric Analysis, 2021, 31 : 9016 - 9044
  • [6] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940
  • [7] Tunneling Estimates for Magnetic Schrödinger Operators
    Shu Nakamura
    Communications in Mathematical Physics, 1999, 200 : 25 - 34
  • [8] Spectrum and scattering for Schrödinger operators with unbounded coefficients
    Kh. Kh. Murtazin
    A. N. Galimov
    Doklady Mathematics, 2006, 73 : 223 - 225
  • [9] Inverse Scattering for Schrödinger Operators on Perturbed Lattices
    Kazunori Ando
    Hiroshi Isozaki
    Hisashi Morioka
    Annales Henri Poincaré, 2018, 19 : 3397 - 3455
  • [10] Weighted norm inequalities related to fractional Schrödinger operators
    Zhiyong Wang
    Pengtao Li
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2023, 14