A remark on the Brill-Noether theory of curves of fixed gonality

被引:0
|
作者
Martens, Gerriet [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Brill-Noether theory; Hurwitz spaces; Gonality; Splitting loci;
D O I
10.1007/s00013-024-02059-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently the Brill-Noether theory of curves C of both fixed genus and gonality was established. In particular, in this theory (now called the Hurwitz-Brill-Noether theory), all irreducible components of the variety of complete linear series of a fixed degree and dimension on C are obtained from the closures of certain so-called "Brill-Noether splitting loci" (loci which have a rather succinct description). In this paper, a method previously invented for the construction of some of these irreducible components is applied to get simply designed varieties inside the difference between these splitting loci and their closures, i.e., inside the boundary of the splitting loci.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 31 条
  • [1] Brill-Noether theory on nodal curves
    Bhosle, Usha N.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (10) : 1133 - 1150
  • [2] Brill-Noether generality of binary curves
    He, Xiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 787 - 807
  • [3] CONSTRUCTING REDUCIBLE BRILL-NOETHER CURVES
    Larson, Eric
    DOCUMENTA MATHEMATICA, 2022, 27 : 1953 - 1983
  • [4] Brill-Noether varieties of k-gonal curves
    Pflueger, Nathan
    ADVANCES IN MATHEMATICS, 2017, 312 : 46 - 63
  • [5] BRILL-NOETHER LOCI WITH FIXED DETERMINANT IN RANK 2
    Osserman, Brian
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (13)
  • [6] Brill-Noether theory and non-special scrolls
    Calabri, Alberto
    Ciliberto, Ciro
    Flamini, Flaminio
    Miranda, Rick
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 121 - 138
  • [7] Curves on Brill-Noether special K3 surfaces
    Haburcak, Richard
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4497 - 4509
  • [8] REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES WITH POSITIVE BRILL-NOETHER NUMBER
    KEEM, CH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) : 349 - 354
  • [9] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [10] Ulrich sheaves and higher-rank Brill-Noether theory
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2017, 474 : 166 - 179