Motional entanglement of remote optically levitated nanoparticles

被引:0
作者
Zambon, N. Carlon [1 ,2 ]
Rossi, M. [1 ,2 ,6 ]
Frimmer, M. [1 ,2 ]
Novotny, L. [1 ,2 ]
Gonzalez-Ballestero, C. [3 ]
Romero-Isart, O. [4 ,5 ]
Militaru, A. [1 ,2 ,7 ]
机构
[1] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Quantum Ctr, CH-8093 Zurich, Switzerland
[3] Vienna Univ Technol TU Wien, Inst Theoret Phys, A-1040 Vienna, Austria
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[5] ICREA Inst Catalana Rec & Estudis Avancats, Barcelona 08010, Spain
[6] Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, NL-2628CJ Delft, Netherlands
[7] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
基金
瑞士国家科学基金会; 欧洲研究理事会; 奥地利科学基金会;
关键词
QUANTUM CONTROL; OSCILLATOR; CRITERION; STATE;
D O I
10.1103/PhysRevA.111.013521
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show how to entangle the motion of optically levitated nanoparticles in distant optical tweezers. The scheme consists in coupling the inelastically scattered light of each particle into transmission lines and directing it towards the other particle. The interference between this light and the background field introduces an effective coupling between the two particles while simultaneously reducing the effect of recoil heating. We analyze the system dynamics, showing that both transient and conditional entanglement between remote particles can be achieved under realistic experimental conditions.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Coherent Scattering of Low Mass Dark Matter from Optically Trapped Sensors [J].
Afek, Gadi ;
Carney, Daniel ;
Moore, David C. .
PHYSICAL REVIEW LETTERS, 2022, 128 (01)
[2]  
Arndt M, 2014, NAT PHYS, V10, P271, DOI [10.1038/NPHYS2863, 10.1038/nphys2863]
[3]   Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW A, 1998, 58 (06) :4345-4347
[4]   Models of wave-function collapse, underlying theories, and experimental tests [J].
Bassi, Angelo ;
Lochan, Kinjalk ;
Satin, Seema ;
Singh, Tejinder P. ;
Ulbricht, Hendrik .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :471-527
[5]   Quantum Erasure Using Entangled Surface Acoustic Phonons [J].
Bienfait, A. ;
Zhong, Y. P. ;
Chang, H-S ;
Chou, M-H ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Peairs, G. A. ;
Povey, R. G. ;
Satzinger, K. J. ;
Cleland, A. N. .
PHYSICAL REVIEW X, 2020, 10 (02)
[6]   Coherent scattering-mediated correlations between levitated nanospheres [J].
Brandao, I ;
Tandeitnik, D. ;
Guerreiro, T. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[7]   Stationary Gaussian entanglement between levitated nanoparticles [J].
Chauhan, Anil Kumar ;
Cernotik, Ondrej ;
Filip, Radim .
NEW JOURNAL OF PHYSICS, 2020, 22 (12)
[8]   Quantum mechanics-free subsystem with mechanical oscillators [J].
de Lepinay, Laure Mercier ;
Ockeloen-Korppi, Caspar F. ;
Woolley, Matthew J. ;
Sillanpaa, Mika A. .
SCIENCE, 2021, 372 (6542) :625-+
[9]   Cavity Cooling of a Levitated Nanosphere by Coherent Scattering [J].
Delic, Uros ;
Reisenbauer, Manuel ;
Grass, David ;
Kiesel, Nikolai ;
Vuletic, Vladan ;
Aspelmeyer, Markus .
PHYSICAL REVIEW LETTERS, 2019, 122 (12)
[10]   The quantum trajectory approach to quantum feedback control of an oscillator revisited [J].
Doherty, Andrew C. ;
Szorkovszky, A. ;
Harris, G. I. ;
Bowen, W. P. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1979) :5338-5353