Artificial superconducting Kondo lattice in a van der Waals heterostructure

被引:0
|
作者
Kai Fan [1 ]
Heng Jin [2 ]
Bing Huang [3 ]
Guijing Duan [2 ]
Rong Yu [3 ]
Zhen-Yu Liu [4 ]
Hui-Nan Xia [4 ]
Li-Si Liu [1 ]
Yao Zhang [1 ]
Tao Xie [1 ]
Qiao-Yin Tang [1 ]
Gang Chen [1 ]
Wen-Hao Zhang [1 ]
F. C. Chen [1 ]
X. Luo [1 ]
W. J. Lu [5 ]
Y. P. Sun [5 ]
Ying-Shuang Fu [5 ]
机构
[1] Huazhong University of Science and Technology,School of Physics and Wuhan National High Magnetic Field Center
[2] Beijing Normal University,School of Physics and Astronomy
[3] Beijing Computational Science Research Center,Department of Physics and Beijing Key Laboratory of Opto
[4] Renmin University of China,electronic Functional Materials and Micro
[5] Chinese Academy of Sciences,nano Devices
[6] Chinese Academy of Sciences,Key Laboratory of Materials Physics, Institute of Solid State Physics
[7] Nanjing University,High Magnetic Field Laboratory
[8] Wuhan Institute of Quantum Technology,Collaborative Innovation Center of Advanced Microstructures
关键词
D O I
10.1038/s41467-024-53166-9
中图分类号
学科分类号
摘要
Engineering Kondo lattice with tailored functionality is desirable for elucidating the heavy fermion physics. We realize the construction of an artificial Kondo lattice/superconductor heterojunction by growing monolayer VSe2 on bulk 2H-NbSe2 with molecular beam epitaxy. Spectroscopic imaging scanning tunneling microscopy measurements show the emergence of a new charge density wave (CDW) phase with 3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{3}\times$$\end{document}3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{3}$$\end{document} periodicity on the monolayer VSe2. Unexpectedly, a pronounced Kondo resonance appears around the Fermi level, and distributes uniformly over the entire film, evidencing the formation of Kondo lattice. Density functional theory calculations suggest the existence of magnetic interstitial V atoms in VSe2/NbSe2, which play a key role in forming the CDW phase along with the Kondo lattice observed in VSe2. The Kondo origin is verified from both the magnetic field and temperature dependences of the resonance peak, yielding a Kondo temperature of ~ 44 K. Moreover, a superconducting proximity gap opens on monolayer VSe2, whose shape deviates from the function of one-band BCS superconductor, but is reproduced by model calculations with heavy electrons participating the pairing condensate. Our work lays the experimental foundation for studying interactions between the heavy fermion liquids and the superconducting condensate.
引用
收藏
相关论文
共 50 条
  • [1] Artificial heavy fermions in a van der Waals heterostructure
    Viliam Vaňo
    Mohammad Amini
    Somesh C. Ganguli
    Guangze Chen
    Jose L. Lado
    Shawulienu Kezilebieke
    Peter Liljeroth
    Nature, 2021, 599 : 582 - 586
  • [2] Artificial heavy fermions in a van der Waals heterostructure
    Vano, Viliam
    Amini, Mohammad
    Ganguli, Somesh C.
    Chen, Guangze
    Lado, Jose L.
    Kezilebieke, Shawulienu
    Liljeroth, Peter
    NATURE, 2021, 599 (7886) : 582 - +
  • [3] Correlated carrier dynamics in a superconducting van der Waals heterostructure
    Baidya, Prakiran
    Bagwe, Vivas
    Raychaudhuri, Pratap
    Bid, Aveek
    APPLIED PHYSICS LETTERS, 2022, 120 (18)
  • [4] Tuning the interfacial transport behavior in a superconducting van der Waals heterostructure
    Zhu, Shuangxing
    Liu, Hao
    Tang, Xiao-Fang
    Wu, Qi-Yi
    Zhang, Chen
    Wu, Jiaxin
    Mei, Junning
    Zhang, Ruan
    Liu, Ying
    Chen, Yu
    Watanabe, Kenji
    Taniguchi, Takashi
    Cai, Xinghan
    Meng, Jian-Qiao
    APPLIED PHYSICS LETTERS, 2025, 126 (05)
  • [5] UOTe: Kondo-Interacting Topological Antiferromagnet in a Van der Waals Lattice
    Broyles, Christopher
    Mardanya, Sougata
    Liu, Mengke
    Ahn, Junyeong
    Dinh, Thao
    Alqasseri, Gadeer
    Garner, Jalen
    Rehfuss, Zackary
    Guo, Ken
    Zhu, Jiahui
    Martinez, David
    Li, Du
    Hao, Yiqing
    Cao, Huibo
    Boswell, Matt
    Xie, Weiwei
    Philbrick, Jeremy G.
    Kong, Tai
    Yang, Li
    Vishwanath, Ashvin
    Kim, Philip
    Xu, Su-Yang
    Hoffman, Jennifer E.
    Denlinger, Jonathan D.
    Chowdhury, Sugata
    Ran, Sheng
    ADVANCED MATERIALS, 2025, 37 (04)
  • [6] Identifying the Transition Order in an Artificial Ferroelectric van der Waals Heterostructure
    Liu, Yang
    Liu, Song
    Li, Baichang
    Yoo, Won Jong
    Hone, James
    NANO LETTERS, 2022, 22 (03) : 1265 - 1269
  • [7] Irreversible coherent matching bonding of van der Waals heterostructure lattice by pressure
    Zhen, Jiapeng
    Huang, Qiushi
    Shen, Kai
    Dong, Hongliang
    Zhang, Shihui
    Lv, Kehong
    Yang, Peng
    Zhang, Yong
    Guo, Silin
    Qiu, Jing
    Liu, Guanjun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (23)
  • [8] Topological superconductivity in a van der Waals heterostructure
    Kezilebieke, Shawulienu
    Huda, Nurul
    Vano, Viliam
    Aapro, Markus
    Ganguli, Somesh C.
    Silveira, Orlando J.
    Glodzik, Szczepan
    Foster, Adam S.
    Ojanen, Teemu
    Liljeroth, Peter
    NATURE, 2020, 588 (7838) : 424 - 428
  • [9] Electrochemistry at the Edge of a van der Waals Heterostructure
    Plackic, Aleksandra
    Neubert, Tilmann J.
    Patel, Kishan
    Kuhl, Michel
    Watanabe, Kenji
    Taniguchi, Takashi
    Zurutuza, Amaia
    Sordan, Roman
    Balasubramanian, Kannan
    SMALL, 2024, 20 (21)
  • [10] Topological superconductivity in a van der Waals heterostructure
    Shawulienu Kezilebieke
    Md Nurul Huda
    Viliam Vaňo
    Markus Aapro
    Somesh C. Ganguli
    Orlando J. Silveira
    Szczepan Głodzik
    Adam S. Foster
    Teemu Ojanen
    Peter Liljeroth
    Nature, 2020, 588 : 424 - 428