Spectrality of a Class of Moran Measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}

被引:0
作者
Ming-Liang Chen [1 ]
机构
[1] Gannan Normal University,School of Mathematics and Computer Science
关键词
Moran measure; Spectral measure; Hadamard triple; Spectrum; Primary 28A25; 28A80; Secondary 42C05; 46C05;
D O I
10.1007/s11785-024-01617-y
中图分类号
学科分类号
摘要
Let {Mk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{M_k\}_{k=1}^\infty $$\end{document} be a sequence of expansive matrices, and let {Dk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{D_k\}_{k=1}^\infty $$\end{document} be a sequence of finite digit sets satisfying ZDkn=Fqkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}_{D_k}^n=\mathcal {F}_{q_k}^n$$\end{document}, where ZDkn={x∈[0,1)n:∑d∈Dke2πi⟨d,x⟩=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}_{D_k}^n=\{ x\in [0, 1)^n:\sum _{d\in D_k}{e^{2\pi i\langle d,x\rangle }}=0\}$$\end{document}, Fqkn=(Znqk∩[0,1)n)\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}_{q_k}^n=(\frac{\mathbb {Z}^n}{q_k}\cap [0, 1)^n)\setminus \{\textbf{0}\}$$\end{document} and the sequence {qk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{q_k\}_{k=1}^\infty $$\end{document} is bounded with qk≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_k\ge 2$$\end{document}. In this paper, we show that the associated integral Moran measure μ{Mk},{Dk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\{M_k\},\{D_k\}}$$\end{document} is a spectral measure if and only if #Dk=qkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#D_k=q_k^n$$\end{document} for all k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document} and Mk∈Mn(qkZ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k\in M_n(q_k\mathbb {Z})$$\end{document} for all k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}.
引用
收藏
相关论文
共 98 条
[1]  
An LX(2014)A class of spectral Moran measures J. Funct. Anal. 266 343-354
[2]  
He XG(2015)Spectrality of the planar Sierpinski family J. Math. Anal. Appl. 432 725-732
[3]  
An LX(2019)On spectral Cantor–Moran measures and a variant of Bourgain’s sum of sine problem Adv. Math. 349 84-124
[4]  
He XG(2021)A multifractal formalism for Hewitt-Stromberg measures J. Geom. Anal. 31 825-862
[5]  
Tao L(2002)The validity of the multifractal formalism: results and examples Adv. Math. 165 264-284
[6]  
An LX(2020)Spectrality of a class of Moran measures Canad. Math. Bull. 63 366-381
[7]  
Fu XY(2021)Spectrality of a class of self-affine measures on Nonlinearity 34 7446-7469
[8]  
Lai CK(2024)Tiling and spectrality for generalized Sierpinski self-affine sets J. Geom. Anal. 34 32-5
[9]  
Attia N(2013)Spectral property of Cantor measures with consecutive digits Adv. Math. 242 187-208
[10]  
Selmi B(2014)On spectral N-Bernoulli measures Adv. Math. 259 511-531