Ultrathin transition metal oxychalcogenide catalysts for oxygen evolution in acidic media

被引:1
作者
Xu, Wenshuo [1 ]
Wu, Yao [2 ]
Xi, Shibo [3 ]
Wang, Yan [1 ]
Wang, Ye [1 ]
Ke, Yuxuan [4 ]
Ding, Lingtong [5 ]
Wang, Xiao [6 ,7 ]
Yang, Jieun [8 ]
Zhang, Wenjing [4 ]
Loh, Kian Ping [9 ]
Ding, Feng [5 ,6 ]
Liu, Zheng [2 ]
Chhowalla, Manish [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge, England
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore, Singapore
[3] ASTAR, Inst Sustainabil Chem Energy & Environm, Singapore, Singapore
[4] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen, Peoples R China
[5] Shenzhen Univ Adv Technol, Fac Mat Sci & Energy Engn, Shenzhen, Peoples R China
[6] Chinese Acad Sci, Inst Technol Carbon Neutral, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[7] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Guangdong Prov Key Lab Funct Oxide Mat & Devices, Shenzhen, Peoples R China
[8] Kyung Hee Univ, Dept Chem, Seoul, South Korea
[9] Natl Univ Singapore, Dept Chem, Singapore, Singapore
来源
NATURE SYNTHESIS | 2025年 / 4卷 / 03期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; MOS2; NANOSHEETS; SEMICONDUCTORS; EXFOLIATION; EFFICIENT; OXIDE;
D O I
10.1038/s44160-024-00694-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional transition metal dichalcogenides (TMDs) exfoliated from bulk layered materials possess interesting properties. Most transition metal oxides are not layered and therefore cannot be exfoliated. Here we report the synthesis of a family of ultrathin materials-transition metal oxychalcogenides (TMOCs)-and demonstrate their unique properties. Two-dimensional TMOCs (MXxOy, M = group IV or V transition metal, X = chalcogen, O = oxygen; x, y = 0-2) from bulk transition metal dichalcogenides (MX2) have been fabricated using tetrabutylammonium intercalation. The stoichiometry of TMOCs can be adjusted, which enables control of their optical bandgaps and tunability of electrical conductivity by more than eight orders of magnitude. By tuning the chalcogen-to-oxygen ratio along with local atomic structure in TMOCs, it is possible to impart unexpected properties. For example, in contrast to conventional TMDs, the hybrid structure of TMOCs renders them surprisingly stable and electrochemically active in strong acids, allowing them to be used as proof-of-concept catalysts for the oxygen evolution reaction at pH approximate to 0. The HfS0.52O1.09 catalyst shows high mass activity (103,000 A g-1 at an overpotential of 0.5 V) and exhibits durability in proton exchange membrane water electrolysers.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
[41]   New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction [J].
Moradi, Mohsen ;
Hasanvandian, Farzad ;
Bahadoran, Ashkan ;
Shokri, Ali ;
Zerangnasrabad, Sara ;
Kakavandi, Babak .
ELECTROCHIMICA ACTA, 2022, 436
[42]   Carbon cloth-supported high-entropy transition metal selenides as high-performance oxygen evolution reaction catalysts [J].
Hu, Changyu ;
Liu, Xiaoyu ;
Han, Guoping ;
Chen, Cheng ;
Liu, Hu ;
Zhou, Wenhao ;
Xie, Huidong .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 717
[43]   Transition-Metal-Substituted Cobalt Carbonate Hydroxide Nanostructures as Electrocatalysts in Alkaline Oxygen Evolution Reaction [J].
Karmakar, Ayon ;
Srivastava, Suneel Kumar .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) :7335-7344
[44]   Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity [J].
Zhu, Zhengju ;
Yin, Huajie ;
He, Chun-Ting ;
Al-Mamun, Mohammad ;
Liu, Porun ;
Jiang, Lixue ;
Zhao, Yong ;
Wang, Yun ;
Yang, Hua-Gui ;
Tang, Zhiyong ;
Wang, Dan ;
Chen, Xiao-Ming ;
Zhao, Huijun .
ADVANCED MATERIALS, 2018, 30 (28)
[45]   Revealing the Reactivity of the Iridium Trioxide Intermediate for the Oxygen Evolution Reaction in Acidic Media [J].
Pearce, Paul E. ;
Yang, Chunzhen ;
Iadecola, Antonella ;
Rodriguez-Carvajal, Juan ;
Rousse, Gwenaelle ;
Dedryvere, Remi ;
Abakumov, Artem M. ;
Giaume, Domitille ;
Deschamps, Michael ;
Tarascon, Jean-Marie ;
Grimaud, Alexis .
CHEMISTRY OF MATERIALS, 2019, 31 (15) :5845-5855
[46]   Steel-based electrocatalysts for efficient and durable oxygen evolution in acidic media [J].
Schaefer, Helmut ;
Kuepper, Karsten ;
Schmidt, Mercedes ;
Mueller-Buschbaum, Klaus ;
Stangl, Johannes ;
Daum, Diemo ;
Steinhart, Martin ;
Schulz-Koelbel, Christine ;
Han, Weijia ;
Wollschlaeger, Joachim ;
Krupp, Ulrich ;
Hou, Peilong ;
Liu, Xiaogang .
CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (08) :2104-2116
[47]   Cobalt -based oxygen evolution catalyst as active and stable as iridium in acidic media [J].
Han, Hyokyung ;
Kim, Ingyeom ;
Park, Sehkyu .
ELECTROCHIMICA ACTA, 2020, 344
[48]   Ruthenium oxychloride supported by manganese oxide for stable oxygen evolution in acidic media [J].
Zhao, Yunxing ;
Hu, Jun ;
Chiang, Chao-Lung ;
Li, Ying ;
Yang, Weichuang ;
Yang, Zhenhai ;
Hung, Wei-Hsuan ;
Lin, Yan-Gu ;
Chen, Zhong ;
Li, Bin ;
Gao, Pingqi ;
Li, Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (39) :20964-20974
[49]   Asymmetric electron occupation of transition metals for the oxygen evolution reaction via a ligand-metal synergistic strategy [J].
Wang, Pai ;
Li, Kunyu ;
Wu, Tongwei ;
Ji, Wei ;
Zhang, Yanning .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (42) :27209-27215
[50]   Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert" ZrSe2 as catalyst for electrolyzers [J].
Najafi, Leyla ;
Bellani, Sebastiano ;
Zappia, Marilena I. ;
Serri, Michele ;
Oropesa-Nunez, Reinier ;
Bagheri, Ahmad ;
Beydaghi, Hossein ;
Brescia, Rosaria ;
Pasquale, Lea ;
Shinde, Dipak V. ;
Zuo, Yong ;
Drago, Filippo ;
Mosina, Kseniia ;
Sofer, Zdenek ;
Manna, Liberato ;
Bonaccorso, Francesco .
NANO SELECT, 2022, 3 (06) :1069-1081