A lightweight model for echo trace detection in echograms based on improved YOLOv8

被引:0
|
作者
Ma, Jungang [1 ,2 ,3 ,4 ]
Tong, Jianfeng [1 ,2 ,3 ]
Xue, Minghua [1 ,2 ,3 ]
Yao, Junfan [1 ,2 ,3 ]
机构
[1] Shanghai Ocean Univ, Coll Marine Living Resource Sci & Management, Shanghai 201306, Peoples R China
[2] Natl Engn Res Ctr Ocean Fisheries, Shanghai 201306, Peoples R China
[3] Minist Educ, Key Lab Sustainable Exploitat Ocean Fisheries Reso, Shanghai 201306, Peoples R China
[4] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai 201306, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
国家重点研发计划;
关键词
D O I
10.1038/s41598-024-82078-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the rise of underwater unmanned platforms like unmanned boats, ROVs, and AUVs, there's an increasing need for underwater detection technologies. Researchers have merged scientific echosounders with these platforms for biometric applications. However, current detection models are too parameter-heavy to embed in echosounders and struggle with noisy, irregular, and dense echograms. This paper introduces YOLOv8-SBE, a lightweight fish detection model based on YOLOv8, addressing these issues by enhancing feature extraction, information fusion, and small object recognition. YOLOv8-SBE adds the C2f_ScConv module to improve efficiency and reduce parameters, incorporates the BiFPN structure to enhance information transfer, and uses the EMA attention module for better small target recognition. It reduces computational complexity by 18.5%, decreases model parameters by 40%, and improves mAP0.5 to 79.5% and mAP0.5:0.95 to 58.2%, making it suitable for echosounders with limited resources.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):
  • [22] An Improved Microaneurysm Detection Model Based on SwinIR and YOLOv8
    Zhang, Bowei
    Li, Jing
    Bai, Yun
    Jiang, Qing
    Yan, Biao
    Wang, Zhenhua
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [23] Leather Defect Detection Based on Improved YOLOv8 Model
    Peng, Zirui
    Zhang, Chen
    Wei, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [24] A Lightweight Forest Pest Image Recognition Model Based on Improved YOLOv8
    Jiang, Tingyao
    Chen, Shuo
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [25] YOLOv8-ACCW: Lightweight Grape Leaf Disease Detection Method Based on Improved YOLOv8
    Chen, Zuxing
    Feng, Junjie
    Zhu, Kun
    Yang, Zhenyan
    Wang, Yanhong
    Ren, Mingyue
    IEEE ACCESS, 2024, 12 : 123595 - 123608
  • [26] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [27] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [28] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [29] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [30] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)