Deep residual 2D convolutional neural network for cardiovascular disease classification

被引:0
|
作者
Elyamani, Haneen A. [1 ]
Salem, Mohammed A. [2 ]
Melgani, Farid [3 ]
Yhiea, N. M. [1 ,4 ]
机构
[1] Suez Canal Univ, Fac Sci, Dept Math, Ismailia 44745, Egypt
[2] German Univ Cairo GUC, Media Engn & Technol, Cairo, Egypt
[3] Univ Trento, Dept Informat Engn & Comp Sci, Via Sommar 14, I-3812 Trento, Italy
[4] British Univ Egypt BUE, Fac Informat & Comp Sci, Cairo, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
ARRHYTHMIA DETECTION; ECG; MODEL; ALGORITHM; SEQUENCE;
D O I
10.1038/s41598-024-72382-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cardiovascular disease (CVD) continues to be a major global health concern, underscoring the need for advancements in medical care. The use of electrocardiograms (ECGs) is crucial for diagnosing cardiac conditions. However, the reliance on professional expertise for manual ECG interpretation poses challenges for expanding accessible healthcare, particularly in community hospitals. To address this, there is a growing interest in leveraging automated and AI-driven ECG analysis systems, which can enhance diagnostic accuracy and efficiency, making quality cardiac care more accessible to a broader population. In this study, we implemented a novel deep two-dimensional convolutional neural network (2D-CNN) on a dataset of PTB-XL for cardiac disorder detection. The studies were performed on 2, 5, and 23 classes of cardiovascular diseases. The our network in classifying healthy/sick patients achived an AUC of 95% and an average accuracy of 87.85%. In 5-classes classification, our model achieved an AUC of 93.46% with an average accuracy of 89.87%. In a more complex scenario involving classification into 23 different classes, the model achieved an AUC of 92.18% and an accuracy of 96.88%. According to the experimental results, our model obtained the best classification result compared to the other methods based on the same public dataset. This indicates that our method can aid healthcare professionals in the clinical analysis of ECGs, offering valuable assistance in diagnosing CVD and contributing to the advancement of computer-aided diagnosis technology.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Automatic Multi-Class Brain Tumor Classification Using Residual Network-152 Based Deep Convolutional Neural Network
    Potadar, Mahesh Pandurang
    Holambe, Raghunath Sambhaji
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (04)
  • [22] Cloud Image Classification Method Based on Deep Convolutional Neural Network
    Zhang F.
    Yan J.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38 (04): : 740 - 746
  • [23] Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network
    Atal, Dinesh Kumar
    Singh, Mukhtiar
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196
  • [24] Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification
    Qiang, Yupeng
    Dong, Xunde
    Liu, Xiuling
    Yang, Yang
    Fang, Yihai
    Dou, Jianhong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 257
  • [25] Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network
    Zhang, Hua
    Liu, Chengyu
    Tang, Fangfang
    Li, Mingyan
    Zhang, Dongxia
    Xia, Ling
    Crozier, Stuart
    Gan, Hongping
    Zhao, Nan
    Xu, Wenlong
    Liu, Feng
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [26] Classification of Breast Abnormalities Using a Deep Convolutional Neural Network and Transfer Learning
    Ruchai, A. N.
    Kober, V., I
    Dorofeev, K. A.
    Karnaukhov, V. N.
    Mozerov, M. G.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (06) : 778 - 783
  • [27] Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
    Romdhane, Taissir Fekih
    Alhichri, Haikel
    Ouni, Ridha
    Atri, Mohamed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
  • [28] Residual Convolutional Neural Network for Diabetic Retinopathy
    Rufaida, Syahidah Izza
    Fanany, Mohamad Ivan
    2017 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2017, : 367 - 373
  • [29] Automatic method for classification of groundnut diseases using deep convolutional neural network
    Vaishnnave, M. P.
    Devi, K. Suganya
    Ganeshkumar, P.
    SOFT COMPUTING, 2020, 24 (21) : 16347 - 16360
  • [30] Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions
    Md. Rashed-Al-Mahfuz
    Mohammad Ali Moni
    Pietro Lio’
    Sheikh Mohammed Shariful Islam
    Shlomo Berkovsky
    Matloob Khushi
    Julian M. W. Quinn
    Biomedical Engineering Letters, 2021, 11 : 147 - 162