Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms

被引:0
作者
Vernuccio, Federico [1 ,2 ]
Broggio, Elia [3 ]
Sorrentino, Salvatore [1 ]
Bresci, Arianna [1 ]
Junjuri, Rajendhar [4 ,5 ,6 ,7 ,8 ,9 ]
Ventura, Marco [1 ,10 ]
Vanna, Renzo [10 ]
Bocklitz, Thomas [4 ,5 ,6 ,7 ,8 ,9 ]
Bregonzio, Matteo [3 ]
Cerullo, Giulio [1 ,10 ]
Rigneault, Herve [2 ]
Polli, Dario [1 ,10 ]
机构
[1] Politecn Milan, Dept Phys, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[3] Datrix SpA, Foro Buonaparte 71, I-20121 Milan, Italy
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Leibniz Hlth Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[6] Leibniz Ctr Photon Infect Res LPI, Albert Einstein Str 9, D-07745 Jena, Germany
[7] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[8] Friedrich Schiller Univ Jena, Abbe Ctr Photon ACP, Helmholtzweg 4, D-07743 Jena, Germany
[9] Leibniz Ctr Photon Infect Res LPI, Helmholtzweg 4, D-07743 Jena, Germany
[10] CNR Inst Photon & Nanotechnol CNR IFN, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
RAMAN-SCATTERING MICROSCOPY; PHASE RETRIEVAL; SPECTROSCOPY; ENTROPY; SPECTRA; SIGNALS; IMAGES;
D O I
10.1038/s41598-024-74912-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] [Anonymous], 2017, PROC IEEE C COMPUTER
  • [2] [Anonymous], 2016, Coherent Raman Scattering Microscopy, DOI [10.1201/b12907, DOI 10.1201/B12907]
  • [3] Broadband Impulsive Stimulated Raman Scattering Based on a Chirped Detection
    Batignani, Giovanni
    Ferrante, Carino
    Fumero, Giuseppe
    Scopigno, Tullio
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (24) : 7789 - 7796
  • [4] Removal of cross-phase modulation artifacts in ultrafast pump-probe dynamics by deep learning
    Bresci, A.
    Guizzardi, M.
    Valensise, C. M.
    Marangi, F.
    Scotognella, F.
    Cerullo, G.
    Polli, D.
    [J]. APL PHOTONICS, 2021, 6 (07)
  • [5] Raman signal extraction from CARS spectra using a learned-matrix representation of the discrete Hilbert transform
    Camp, Charles H., Jr.
    [J]. OPTICS EXPRESS, 2022, 30 (15) : 26057 - 26071
  • [6] Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval
    Camp, Charles H., Jr.
    Lee, Young Jong
    Cicerone, Marcus T.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (04) : 408 - 415
  • [7] Camp CH, 2014, NAT PHOTONICS, V8, P627, DOI [10.1038/nphoton.2014.145, 10.1038/NPHOTON.2014.145]
  • [8] Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications
    Cheng, JX
    Xie, XS
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (03) : 827 - 840
  • [9] Polarization coherent anti-Stokes Raman scattering microscopy
    Cheng, JX
    Book, LD
    Xie, XS
    [J]. OPTICS LETTERS, 2001, 26 (17) : 1341 - 1343
  • [10] Multivariate analysis of hyperspectral stimulated Raman scattering microscopy images
    Chitra Ragupathy, Imaiyan
    Schweikhard, Volker
    Zumbusch, Andreas
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (09) : 1630 - 1642