Classification of irreducible representations of affine group superschemes and the division superalgebras of their endomorphisms

被引:0
|
作者
Hayashi, Takuma [1 ]
机构
[1] Osaka Metropolitan Univ, Osaka Cent Adv Math Inst, 3-3-138 Sugimoto Sumiyoshi ku, Osaka 5588585, Japan
关键词
Affine group superscheme; Irreducible representations; The Brauer-Wall group; The Borel-Weil theorem; Quasi-reductive algebraic supergroups; SIMPLE LIE-SUPERALGEBRAS;
D O I
10.1007/s00209-024-03664-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify irreducible representations of affine group superschemes over fields F of characteristic not two in terms of those over a separable closure Fsep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F<^>{{{\,\textrm{sep}\,}}}$$\end{document} and their Galois twists. We also compute the division superalgebras of their endomorphisms. Finally, we give numerical conclusions for quasi-reductive algebraic supergroups under certain conditions, based on Shibata's Borel-Weil theory in Shibata (J Algebra 547: 179-219, 2020).
引用
收藏
页数:48
相关论文
共 7 条