A novel intrusion detection framework for optimizing IoT security

被引:2
|
作者
Qaddos, Abdul [1 ]
Yaseen, Muhammad Usman [1 ]
Al-Shamayleh, Ahmad Sami [2 ]
Imran, Muhammad [1 ]
Akhunzada, Adnan [3 ]
Alharthi, Salman Z. [4 ]
机构
[1] COMSATS Univ Islamabad CUI, Dept Comp Sci, Islamabad 45550, Pakistan
[2] Al Ahliyya Amman Univ, Fac Informat Technol, Dept Data Sci & Artificial Intelligence, Amman 19328, Jordan
[3] Univ Doha Sci & Technol, Coll Comp & Informat Technol, Doha 24449, Qatar
[4] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca 24381, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
ATTACK DETECTION SCHEME; DETECTION SYSTEM; INTERNET; THINGS;
D O I
10.1038/s41598-024-72049-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emerging expanding scope of the Internet of Things (IoT) necessitates robust intrusion detection systems (IDS) to mitigate security risks effectively. However, existing approaches often struggle with adaptability to emerging threats and fail to account for IoT-specific complexities. To address these challenges, this study proposes a novel approach by hybridizing convolutional neural network (CNN) and gated recurrent unit (GRU) architectures tailored for IoT intrusion detection. This hybrid model excels in capturing intricate features and learning relational aspects crucial in IoT security. Moreover, we integrate the feature-weighted synthetic minority oversampling technique (FW-SMOTE) to handle imbalanced datasets, which commonly afflict intrusion detection tasks. Validation using the IoTID20 dataset, designed to emulate IoT environments, yields exceptional results with 99.60% accuracy in attack detection, surpassing existing benchmarks. Additionally, evaluation on the network domain dataset, UNSW-NB15, demonstrates robust performance with 99.16% accuracy, highlighting the model's applicability across diverse datasets. This innovative approach not only addresses current limitations in IoT intrusion detection but also establishes new benchmarks in terms of accuracy and adaptability. The findings underscore its potential as a versatile and effective solution for safeguarding IoT ecosystems against evolving security threats.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Advancing IoT security: a comprehensive AI-based trust framework for intrusion detection
    Kaliappan, Chandra Prabha
    Palaniappan, Kanmani
    Ananthavadivel, Devipriya
    Subramanian, Ushasukhanya
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (05) : 2737 - 2757
  • [2] An Ensemble Learning Based Intrusion Detection Model for Industrial IoT Security
    Mohy-Eddine, Mouaad
    Guezzaz, Azidine
    Benkirane, Said
    Azrour, Mourade
    Farhaoui, Yousef
    BIG DATA MINING AND ANALYTICS, 2023, 6 (03) : 273 - 287
  • [3] Intrusion Detection System for IoT Security
    Das, Sudeshna
    Majumder, Abhishek
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NETWORK SECURITY AND BLOCKCHAIN TECHNOLOGY, ICNSBT 2024, 2025, 1158 : 389 - 399
  • [4] Network Intrusion Detection for IoT Security Based on Learning Techniques
    Chaabouni, Nadia
    Mosbah, Mohamed
    Zemmari, Akka
    Sauvignac, Cyrille
    Faruki, Parvez
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (03): : 2671 - 2701
  • [5] An Integrated Multilayered Framework for IoT Security Intrusion Decisions
    Sallay, Hassen
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) : 429 - 444
  • [6] Deep Learning in IoT Intrusion Detection
    Tsimenidis, Stefanos
    Lagkas, Thomas
    Rantos, Konstantinos
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [7] A Novel Intrusion Detection Approach Using Machine Learning Ensemble for IoT Environments
    Verma, Parag
    Dumka, Ankur
    Singh, Rajesh
    Ashok, Alaknanda
    Gehlot, Anita
    Malik, Praveen Kumar
    Gaba, Gurjot Singh
    Hedabou, Mustapha
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [8] lIDS-SIoEL: intrusion detection framework for IoT-based smart environments security using ensemble learning
    Hazman, Chaimae
    Guezzaz, Azidine
    Benkirane, Said
    Azrour, Mourade
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (06): : 4069 - 4083
  • [9] Multilevel Intrusion Detection Based on Transformer and Wavelet Transform for IoT Data Security
    Liang, Peifeng
    Yang, Lina
    Xiong, Zenggang
    Zhang, Xuemin
    Liu, Gang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25613 - 25624
  • [10] An intrusion detection framework for energy constrained IoT devices
    Arshad, Junaid
    Azad, Muhammad Ajmal
    Abdeltaif, Muhammad Mahmoud
    Salah, Khaled
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 136 (136)