The repeated low-velocity impact response and damage accumulation of shape memory alloy hybrid composite laminates

被引:0
|
作者
Li, Hao [1 ,2 ]
Liu, Kun [1 ,2 ]
Tao, Zhen [1 ,2 ]
Ye, Liqing [1 ,2 ]
Xiao, Wenkang [1 ,2 ]
机构
[1] East China Jiaotong Univ, Jiangxi Key Lab Disaster Prevent Mitigat & Emergen, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
composites; shape memory alloy; repeated low-velocity impact; delamination; damage accumulation; MECHANICAL-PROPERTIES; BEHAVIOR; PLATES; PERFORMANCE; RESISTANCE; SUBJECT;
D O I
10.1515/epoly-2024-0100
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The repeated low-velocity impact responses of traditional glass fiber-reinforced composites and shape memory alloy (SMA) hybrid composites were explored in this work. The force-time/displacement and energy-time curves were compared based on the impact damage. The variations of impact mechanical features including contact peak force, maximum deflection, and absorbed energy were analyzed. The damage accumulation of the two kinds of composites was further assessed. Results showed that the damage tolerance and impact resistance of SMA hybrid composites were improved. The changes of dynamic mechanical responses were closely associated with the damage modes at different impact energies. The total energy absorption of SMA hybrid composites was much larger than that of traditional composites with more repeated impact numbers. Moreover, the damage accumulation of SMA hybrid composite was slower compared to traditional composite, while the improvement of SMA hybridization on the impact resistance of the composites was less obvious at higher impact energy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] PARAMETRIC STUDIES OF SHAPE MEMORY ALLOY HYBRID COMPOSITE LAMINATES UNDER LOW-VELOCITY IMPACT
    Lin, Y-C.
    Chen, Y-L.
    Chen, H-W.
    JOURNAL OF MECHANICS, 2016, 32 (05) : 565 - 577
  • [2] Mechanical response of shape memory alloy-based hybrid composite subjected to low-velocity impacts
    Pinto, Fulvio
    Meo, Michele
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (22) : 2713 - 2722
  • [3] Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates
    Li, Lijun
    Sun, Lingyu
    Wang, Taikun
    Kang, Ning
    Cao, Wan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 84 : 995 - 1010
  • [4] Low-velocity impact response and damage tolerance of hybrid biaxial/triaxial braided composite laminates
    Wu, Zhenyu
    Wang, Kang
    Shi, Lin
    Cheng, Xiaoying
    Yuan, Yanhong
    POLYMER COMPOSITES, 2023, 44 (06) : 3068 - 3083
  • [5] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9
  • [6] The response of hybrid titanium carbon laminates to the low-velocity impact
    Jakubczak, P.
    Bienias, J.
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [7] Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact
    Zhou, Junjie
    Liu, Bin
    Wang, Shengnan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 129
  • [8] Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts
    Liao, Binbin
    Zhou, Jianwu
    Li, Ying
    Wang, Panding
    Xi, Li
    Gao, Ruxin
    Bo, Ke
    Fang, Daining
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 182 (182)
  • [9] Study on the response to low-velocity impact of a composite plate improved by shape memory alloy
    Ying Wu
    Yongdong Wu
    Yuanxun Wang
    Weifang Zhong
    Acta Mechanica Solida Sinica, 2007, 20 : 357 - 362
  • [10] Study on the response to low-velocity impact of a composite plate improved by shape memory alloy
    Wu, Ying
    Wu, Yongdong
    Wang, Yuanxun
    Zhong, Weifang
    ACTA MECHANICA SOLIDA SINICA, 2007, 20 (04) : 357 - 362