Effects of temperature, strain rate and grain size on the Twin Induced Plasticity (TWIP) effect of an AISI 316 LV austenitic stainless steel

被引:0
作者
Braga, Diogo Pedrino [1 ]
Palhares, Ieda Cardoso [1 ]
Afonso, Conrado Ramos Moreira [1 ]
Magalhaes, Danielle Cristina Camilo [1 ,2 ]
Della Rovere, Carlos Alberto [1 ,2 ]
Kliauga, Andrea Madeira [1 ,2 ]
机构
[1] Fed Univ Sao Carlos UFSCar, Dept Mat Engn, Rodovia Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Mat Engn, Munir Rachid Corros Lab, Rodovia Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 931卷
基金
巴西圣保罗研究基金会;
关键词
Twin-induced plasticity; Strain rate; Temperature; Grain size; Crystallographic texture; STACKING-FAULT ENERGY; HARDENING BEHAVIOR; MECHANICAL-BEHAVIOR; DEFORMATION TWINS; FCC METALS; DEPENDENCE; STRESS; MODEL;
D O I
10.1016/j.msea.2025.148234
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The AISI 316 LV austenitic stainless steel features low carbon and nitrogen additions along with higher nickel content, which lowers its critical temperature for martensitic transformation and enhances magnetic stability down to liquid nitrogen temperature. At cryogenic temperatures, it exhibits a mechanical twinning-induced plasticity (TWIP) effect, which improves its strain hardening and ductility, thereby increasing its strength and toughness. However, the volume fraction of deformation twins varies with temperature, strain rate and average grain size, and an accurate estimation of the transformed volume is a key problem in calculating the strength contribution to model the strain hardening behavior. In this study, samples with grain sizes of 5 mu m and 50 mu m were submitted to tensile deformation at strain rates of 10-4 s- 1, 10-3 s- 1, and 10- 2 s- 1 over a temperature range of-100 to 300 degrees C. Detailed microstructure characterization quantified the amount of dislocation and twin volume fraction, and these results were correlated with strain hardening models. The critical strain required to initiate mechanical twinning varied with temperature and grain size. The hardening behavior exhibited negative strain rate sensitivity. The results indicate that a transition occurred in the nucleation site, influenced by grain size.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Temperature Dependence of Fracture Behavior and Mechanical Properties of AISI 316 Austenitic Stainless Steel
    Lv, Xinliang
    Chen, Shenghu
    Wang, Qiyu
    Jiang, Haichang
    Rong, Lijian
    METALS, 2022, 12 (09)
  • [12] Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets
    Amelirad, Omid
    Assempour, Ahmad
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 47 : 310 - 323
  • [13] Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel
    Sohrabi, Mohammad Javad
    Mirzadeh, Hamed
    Sadeghpour, Saeed
    Mahmudi, Reza
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 160
  • [14] Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity
    Mishra, Sushil K.
    Tiwari, Shashank M.
    Kumar, Arun M.
    Hector, Louis G., Jr.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (05): : 1598 - 1609
  • [15] Multiple strengthening sources and adiabatic shear banding during high strain-rate deformation of AISI 321 austenitic stainless steel: Effects of grain size and strain rate
    Tiamiyu, A. A.
    Odeshi, A. G.
    Szpunar, J. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 711 : 233 - 249
  • [16] Tensile mechanical properties, deformation mechanisms, fatigue behaviour and fatigue life of 316H austenitic stainless steel: Effects of grain size
    Zhao, Lei
    Qi, Xueyan
    Xu, Lianyong
    Han, Yongdian
    Jing, Hongyang
    Song, Kai
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (02) : 533 - 550
  • [17] Effect of grain size on austenite stability and room temperature low cycle fatigue behaviour of solution annealed AISI 316LN austenitic stainless steel
    Basu, K.
    Das, M.
    Bhattacharjee, D.
    Chakraborti, P. C.
    MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (11) : 1278 - 1284
  • [18] Effects of strain and strain-induced α′-martensite on passive films in AISI 304 austenitic stainless steel
    Lv Jinlong
    Luo Hongyun
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 34 : 484 - 490
  • [19] Effect of grain refinement on strain hardening and fracture in austenitic stainless steel
    Xu, D. M.
    Wan, X. L.
    Yu, J. X.
    Xu, G.
    Li, G. Q.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (11) : 1344 - 1352
  • [20] The Role of Grain Size on Deformation of 316H Austenitic Stainless Steel
    Mahalingam, S.
    Flewitt, P. E. J.
    Shterenlikht, A.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI, 2013, 525-526 : 201 - +