Skin lesion segmentation with a multiscale input fusion U-Net incorporating Res2-SE and pyramid dilated convolution

被引:0
|
作者
Liu, Zhihui [1 ]
Hu, Jie [1 ]
Gong, Xulu [1 ,2 ]
Li, Fuzhong [1 ]
机构
[1] Shanxi Agr Univ, Coll Software, Mingxing 030801, Taigu, Peoples R China
[2] Shanxi Agr Univ, Coll Agr Engn, Mingxing 030801, Taigu, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Skin lesion segmentation; Deep learning; Multiscale input fusion; Squeeze and excitation; Pyramid dilated convolution; Residual structures; NETWORK;
D O I
10.1038/s41598-025-92447-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skin lesion segmentation is crucial for identifying and diagnosing skin diseases. Accurate segmentation aids in identifying and localizing diseases, monitoring morphological changes, and extracting features for further diagnosis, especially in the early detection of skin cancer. This task is challenging due to the irregularity of skin lesions in dermatoscopic images, significant color variations, boundary blurring, and other complexities. Artifacts like hairs, blood vessels, and air bubbles further complicate automatic segmentation. Inspired by U-Net and its variants, this paper proposes a Multiscale Input Fusion Residual Attention Pyramid Convolution Network (MRP-UNet) for dermoscopic image segmentation. MRP-UNet includes three modules: the Multiscale Input Fusion Module (MIF), Res2-SE Module, and Pyramid Dilated Convolution Module (PDC). The MIF module processes lesions of different sizes and morphologies by fusing input information from various scales. The Res2-SE module integrates Res2Net and SE mechanisms to enhance multi-scale feature extraction. The PDC module captures image information at different receptive fields through pyramid dilated convolution, improving segmentation accuracy. Experiments on ISIC 2016, ISIC 2017, ISIC 2018, PH2, and HAM10000 datasets show that MRP-UNet outperforms other methods. Ablation studies confirm the effectiveness of its main modules. Both quantitative and qualitative analyses demonstrate MRP-UNet's superiority over state-of-the-art methods. MRP-UNet enhances skin lesion segmentation by combining multiscale fusion, residual attention, and pyramid dilated convolution. It achieves higher accuracy across multiple datasets, showing promise for early skin disease diagnosis and improved patient outcomes.
引用
收藏
页数:19
相关论文
共 45 条
  • [21] GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements
    Hao, Shengnan
    Wu, Haotian
    Jiang, Yanyan
    Ji, Zhanlin
    Zhao, Li
    Liu, Linyun
    Ganchev, Ivan
    INFORMATION, 2023, 14 (09)
  • [22] GA-Net: Ghost convolution adaptive fusion skin lesion segmentation network
    Zhou, Longsong
    Liang, Liming
    Sheng, Xiaoqi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [23] Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
    Pennisi, Andrea
    Bloisi, Domenico D.
    Suriani, Vincenzo
    Nardi, Daniele
    Facchiano, Antonio
    Giampetruzzi, Anna Rita
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (05) : 1217 - 1230
  • [24] Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation
    Sanjar, Karshiev
    Bekhzod, Olimov
    Kim, Jaeil
    Kim, Jaesoo
    Paul, Anand
    Kim, Jeonghong
    APPLIED SCIENCES-BASEL, 2020, 10 (10):
  • [25] Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
    Andrea Pennisi
    Domenico D. Bloisi
    Vincenzo Suriani
    Daniele Nardi
    Antonio Facchiano
    Anna Rita Giampetruzzi
    Journal of Digital Imaging, 2022, 35 : 1217 - 1230
  • [26] A New Hybrid Model for Segmentation of the Skin Lesion Based on Residual Attention U-Net
    Almuayqil, Saleh Naif
    Arnous, Reham
    Sakr, Noha
    Fadel, Magdy M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5177 - 5192
  • [27] EAAC-Net: An Efficient Adaptive Attention and Convolution Fusion Network for Skin Lesion Segmentation
    Fan, Chao
    Zhu, Zhentong
    Peng, Bincheng
    Xuan, Zhihui
    Zhu, Xinru
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, : 1120 - 1136
  • [28] ATTENTION SWIN U-NET: CROSS-CONTEXTUAL ATTENTION MECHANISM FOR SKIN LESION SEGMENTATION
    Aghdam, Ehsan Khodapanah
    Azad, Reza
    Zarvani, Maral
    Merhof, Dorit
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [29] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [30] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Li, Ya-Hui
    Lin, Shao-Chieh
    Chung, Hsiao-Wen
    Chang, Chia-Ching
    Peng, Hsu-Hsia
    Huang, Teng-Yi
    Shen, Wu-Chung
    Tsai, Chon-Haw
    Lo, Yu-Chien
    Lee, Tung-Yang
    Juan, Cheng-Hsuan
    Juan, Cheng-En
    Chang, Hing-Chiu
    Liu, Yi-Jui
    Juan, Chun-Jung
    EUROPEAN RADIOLOGY, 2023, 33 (09) : 6157 - 6167