4Seasons: Benchmarking Visual SLAM and Long-Term Localization for Autonomous Driving in Challenging Conditions

被引:1
作者
Wenzel, Patrick [1 ]
Yang, Nan [2 ]
Wang, Rui [3 ]
Zeller, Niclas [4 ]
Cremers, Daniel [1 ]
机构
[1] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[2] Real Labs Meta, Redmond, WA USA
[3] Microsoft Mixed Real & AI Lab, Zurich, Switzerland
[4] Karlsruhe Univ Appl Sci, Karlsruhe, Germany
关键词
Autonomous Driving; Benchmark; Long-Term Visual Localization; SLAM; Visual Odometry; Camera Pose Estimation; IMAGE; MODEL; BAGS;
D O I
10.1007/s11263-024-02230-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://go.vision.in.tum.de/4seasons.
引用
收藏
页码:1564 / 1586
页数:23
相关论文
共 82 条
[1]   Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words [J].
Angeli, Adrien ;
Filliat, David ;
Doncieux, Stephane ;
Meyer, Jean-Arcady .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) :1027-1037
[2]  
Arandjelovic R, 2018, IEEE T PATTERN ANAL, V40, P1437, DOI [10.1109/TPAMI.2017.2711011, 10.1109/CVPR.2016.572]
[3]   All about VLAD [J].
Arandjelovic, Relja ;
Zisserman, Andrew .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1578-1585
[4]   Neural Codes for Image Retrieval [J].
Babenko, Artem ;
Slesarev, Anton ;
Chigorin, Alexandr ;
Lempitsky, Victor .
COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 :584-599
[5]  
Badino H, 2011, IEEE INT VEH SYM, P794, DOI 10.1109/IVS.2011.5940504
[6]  
Barnes D, 2020, IEEE INT CONF ROBOT, P6433, DOI [10.1109/ICRA40945.2020.9196884, 10.1109/icra40945.2020.9196884]
[7]   Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather [J].
Bijelic, Mario ;
Gruber, Tobias ;
Mannan, Fahim ;
Kraus, Florian ;
Ritter, Werner ;
Dietmayer, Klaus ;
Heide, Felix .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11679-11689
[8]   The Malaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario [J].
Blanco-Claraco, Jose-Luis ;
Moreno-Duenas, Francisco-Angel ;
Gonzalez-Jimenez, Javier .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (02) :207-214
[9]   The EuRoC micro aerial vehicle datasets [J].
Burri, Michael ;
Nikolic, Janosch ;
Gohl, Pascal ;
Schneider, Thomas ;
Rehder, Joern ;
Omari, Sammy ;
Achtelik, Markus W. ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) :1157-1163
[10]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628