In this work we deal with a singular evolution equation of the form {E-u(center dot)= Au,t>0,<br /> u(0) = u0, where both A and E are linear operators, with E bounded but not necessarily injective, defined in adequate subspaces of a given Banach space X. By using the concept of generalized semigroups, our goal is to prove a Hille-Yosida type theorem for this problem, that is, to find necessary and sufficient conditions under which A is the generator of a generalized semigroup {U(t):t >= 0}. This problem is dealt with by making use of the E-spectral theory and the concept of generalized integrable families. Finally, we present an abstract example that illustrates the theory.
机构:
Chinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R China
机构:
Univ Puerto Rico, Stat Inst & Computerized Informat Syst, Fac Business Adm, Rio Piedras Campus,15 Ave Unviversidad Ste 1501, San Juan, PR 00925 USAUniv Puerto Rico, Stat Inst & Computerized Informat Syst, Fac Business Adm, Rio Piedras Campus,15 Ave Unviversidad Ste 1501, San Juan, PR 00925 USA
机构:
Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Peng, Li
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R ChinaXiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
机构:
Chinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R China
机构:
Univ Puerto Rico, Stat Inst & Computerized Informat Syst, Fac Business Adm, Rio Piedras Campus,15 Ave Unviversidad Ste 1501, San Juan, PR 00925 USAUniv Puerto Rico, Stat Inst & Computerized Informat Syst, Fac Business Adm, Rio Piedras Campus,15 Ave Unviversidad Ste 1501, San Juan, PR 00925 USA
机构:
Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Peng, Li
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R ChinaXiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China