A new fully projective O(lg N) line convex polygon intersection algorithmA new fully projective O(lg N) line convex polygon intersection algorithmV. Skala

被引:0
作者
Vaclav Skala [1 ]
机构
[1] University of West Bohemia,Department of Computer Science and Engineering
关键词
Intersection computation; Projective space; Convex polygon; Computational complexity; Line clipping; Duality;
D O I
10.1007/s00371-024-03413-3
中图分类号
学科分类号
摘要
Intersecting algorithms, especially line clipping in E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E^{2}}$$\end{document} and E3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E^{3}}$$\end{document} in computer graphics, have been studied for a long time. Many different algorithms have been developed. The simplest case is a line clipping by a convex polygon in E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E^{2}}$$\end{document} with O(N) computational complexity and with known polygon edges orientation. This contribution presents a new algorithm for a line clipping by a convex polygon in E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} with O(lg N) complexity, which is based on the point-in-half plane test. The proposed algorithm does not require prior knowledge of the polygon edge orientation. The vertices of the convex polygon and the clipped line can be given in projective space using homogeneous coordinates. The algorithm uses vector–vector operations for efficient implementation with SSE or AVX vector–vector instructions or on GPUs. It is simple and robust.
引用
收藏
页码:1241 / 1249
页数:8
相关论文
empty
未找到相关数据