Interrelations between dualities in classical integrable systems and a classical-classical version of the quantum-classical duality

被引:0
作者
Potapov, R. A. [1 ,2 ]
Zotov, A. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow, Russia
关键词
integrable systems; spectral duality; Rui[!text type='js']js[!/text]enaars duality; quantum-classical duality; MOMENT MAPS; EQUATION;
D O I
10.1134/S0040577925020059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the Ruijsenaars action-angle duality in classical many-body integrable systems through the spectral duality transformation relating the classical spin chains and Gaudin models. For this purpose, the Lax matrices of many-body systems are represented in the multi-pole (Gaudin-like) form by introducing a fictitious spectral parameter. This form of Lax matrices is also interpreted as a classical-classical version of the quantum-classical duality.
引用
收藏
页码:252 / 275
页数:24
相关论文
共 42 条
[1]   DUAL MOMENT MAPS INTO LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
HURTUBISE, J .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :299-308
[2]   Three-particle integrable systems with elliptic dependence on momenta and theta function identities [J].
Aminov, G. ;
Mironov, A. ;
Morozov, A. ;
Zotov, A. .
PHYSICS LETTERS B, 2013, 726 (4-5) :802-808
[3]  
Arutyunov G., 2019, Elements of Classical and Quantum Integrable Systems, DOI 10.1007/978-3-030-24198-8
[4]   Explicit examples of DIM constraints for network matrix models [J].
Awata, Hidetoshi ;
Kanno, Hiroaki ;
Matsumoto, Takuya ;
Mironov, Andrei ;
Morozov, Alexei ;
Morozov, Andrey ;
Ohkubo, Yusuke ;
Zenkevich, Yegor .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07)
[5]   Zamolodchikov's tetrahedron equation and hidden structure of quantum groups [J].
Bazhanov, VV ;
Sergeev, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3295-3310
[6]   Trigonometric version of quantum-classical duality in integrable systems [J].
Beketov, M. ;
Liashyk, A. ;
Zabrodin, A. ;
Zotov, A. .
NUCLEAR PHYSICS B, 2016, 903 :150-163
[7]  
BELAVIN AA, 1982, FUNCT ANAL APPL+, V16, P159
[8]  
Boller S, 2000, Arxiv, DOI arXiv:math/0004030
[9]   On double-elliptic integrable systems 1. A duality argument for the case of SU(2) [J].
Braden, HW ;
Marshakov, A ;
Mironov, A ;
Morozov, A .
NUCLEAR PHYSICS B, 2000, 573 (1-2) :553-572
[10]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416