Improvements and Persistent Biases in the Ocean Climatology Simulated by the Beijing Climate Center Climate System Models from CMIP5 to CMIP6

被引:0
|
作者
Ma, Libin [1 ,2 ,3 ]
Wan, Chong [2 ]
Wu, Tongwen [1 ,2 ,3 ]
Lu, Yixiong [1 ,2 ,3 ]
Wu, Fanghua [1 ,2 ,3 ]
Fang, Yongjie [1 ,2 ,3 ]
Li, Jianglong [1 ,2 ,3 ]
Xin, Xiaoge [1 ,2 ,3 ]
He, Ying [1 ,2 ,3 ]
机构
[1] CMA Earth Syst Modeling & Predict Ctr, Beijing, Peoples R China
[2] Chinese Acad Meteorol Sci, State Key Lab Severe Disaster, Beijing, Peoples R China
[3] China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing, Peoples R China
来源
ADVANCES IN ATMOSPHERIC SCIENCES | 2025年
基金
中国国家自然科学基金;
关键词
BCC-CSM; CMIP; hydrographic characteristics; ocean circulation; MERIDIONAL OVERTURNING CIRCULATION; EMBEDDED LAGRANGIAN MODEL; SEA-ICE MODEL; PART I; BCC-CSM; PACIFIC; IMPACTS; VARIABILITY; ATMOSPHERE; ATLANTIC;
D O I
10.1007/s00376-024-4049-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study evaluates the ocean climatology simulated by the Beijing Climate Center Climate System Models (BCC-CSMs) participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). CMIP6 BCC models generally outperform CMIP5 ones in reproducing ocean states. The CMIP6 high-resolution model, BCC-CSM2-HR, with an enhanced ocean component, exhibits the best simulation performance overall. Specifically, only BCC-CSM2-HR can accurately reproduce the southern equatorial current in the Pacific Ocean, implying the benefits of an enhanced ocean component. Persistent biases are also identified in BCC models across CMIP5 to CMIP6, including substantial biases in sea surface salinity in the Arctic Ocean, warm biases in the intermediate and deep ocean, and notable salinity biases in the northern Indian Ocean. These biases are also commonly presented in other CMIP5 and CMIP6 models. Furthermore, this study evaluates how BCC models simulate modes of climate variability, such as ENSO (El Ni & ntilde;o-Southern Oscillation), PDO (Pacific Decadal Oscillation), and NPGO (North Pacific Gyre Oscillation). Future plans are also outlined, including the online integration of an ocean surface wave model and the refinement of model resolution, for development efforts aimed at bolstering the accuracy and reliability of BCC model simulations of ocean climatology.
引用
收藏
页码:921 / 951
页数:31
相关论文
共 50 条
  • [31] Tropical atlantic climate biases and DAMIP experiments: insights from CMIP6 models
    Silva, Paulo
    Verona, Laura
    Wainer, Ilana
    Khodri, Myriam
    CLIMATE DYNAMICS, 2024, 62 (07) : 6861 - 6874
  • [32] On the spring stratospheric final warming in CMIP5 and CMIP6 models
    Hu, Jinggao
    Liu, Zexuan
    Xu, Haiming
    Ren, Rongcai
    Jin, Dachao
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (01) : 129 - 145
  • [33] Present-day and future climate over central and South America according to CMIP5/CMIP6 models
    Ortega, Geusep
    Arias, Paola A.
    Villegas, Juan Camilo
    Marquet, Pablo A.
    Nobre, Paulo
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (15) : 6713 - 6735
  • [34] MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models
    Hung, Meng-Pai
    Lin, Jia-Lin
    Wang, Wanqiu
    Kim, Daehyun
    Shinoda, Toshiaki
    Weaver, Scott J.
    JOURNAL OF CLIMATE, 2013, 26 (17) : 6185 - 6214
  • [35] Evaluation of Simulated Cloud Diurnal Variation in CMIP6 Climate Models
    Chen, Guoxing
    Wang, Wei-Chyung
    Bao, Qing
    Li, Jiandong
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (06)
  • [36] Evaluation of CMIP5 and CORDEX derived wave climate in Indian Ocean
    Chowdhury, Piyali
    Behera, Manasa Ranjan
    CLIMATE DYNAMICS, 2019, 52 (7-8) : 4463 - 4482
  • [37] Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations
    Monerie, Paul-Arthur
    Wainwright, Caroline M.
    Sidibe, Moussa
    Akinsanola, Akintomide Afolayan
    CLIMATE DYNAMICS, 2020, 55 (5-6) : 1385 - 1401
  • [38] Identification of deficiencies in seasonal rainfall simulated by CMIP5 climate models
    Dunning, Caroline M.
    Allan, Richard P.
    Black, Emily
    ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (11):
  • [39] South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements
    He, Linqiang
    Zhou, Tianjun
    Chen, Xiaolong
    CLIMATE DYNAMICS, 2023, 61 (3-4) : 1049 - 1061
  • [40] Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble
    Coppola, Erika
    Raffaele, Francesca
    Giorgi, Filippo
    Giuliani, Graziano
    Xuejie, Gao
    Ciarlo, James M.
    Sines, Taleena Rae
    Torres-Alavez, Jose Abraham
    Das, Sushant
    di Sante, Fabio
    Pichelli, Emanuela
    Glazer, Russell
    Mueller, Sebastian Karl
    Abba Omar, Sabina
    Ashfaq, Moetasim
    Bukovsky, Melissa
    Im, E. -S.
    Jacob, Daniela
    Teichmann, Claas
    Remedio, Armelle
    Remke, Thomas
    Kriegsmann, Arne
    Bulow, Katharina
    Weber, Torsten
    Buntemeyer, Lars
    Sieck, Kevin
    Rechid, Diana
    CLIMATE DYNAMICS, 2021, 57 (5-6) : 1293 - 1383