Improvements and Persistent Biases in the Ocean Climatology Simulated by the Beijing Climate Center Climate System Models from CMIP5 to CMIP6

被引:0
|
作者
Ma, Libin [1 ,2 ,3 ]
Wan, Chong [2 ]
Wu, Tongwen [1 ,2 ,3 ]
Lu, Yixiong [1 ,2 ,3 ]
Wu, Fanghua [1 ,2 ,3 ]
Fang, Yongjie [1 ,2 ,3 ]
Li, Jianglong [1 ,2 ,3 ]
Xin, Xiaoge [1 ,2 ,3 ]
He, Ying [1 ,2 ,3 ]
机构
[1] CMA Earth Syst Modeling & Predict Ctr, Beijing, Peoples R China
[2] Chinese Acad Meteorol Sci, State Key Lab Severe Disaster, Beijing, Peoples R China
[3] China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing, Peoples R China
来源
ADVANCES IN ATMOSPHERIC SCIENCES | 2025年
基金
中国国家自然科学基金;
关键词
BCC-CSM; CMIP; hydrographic characteristics; ocean circulation; MERIDIONAL OVERTURNING CIRCULATION; EMBEDDED LAGRANGIAN MODEL; SEA-ICE MODEL; PART I; BCC-CSM; PACIFIC; IMPACTS; VARIABILITY; ATMOSPHERE; ATLANTIC;
D O I
10.1007/s00376-024-4049-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study evaluates the ocean climatology simulated by the Beijing Climate Center Climate System Models (BCC-CSMs) participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). CMIP6 BCC models generally outperform CMIP5 ones in reproducing ocean states. The CMIP6 high-resolution model, BCC-CSM2-HR, with an enhanced ocean component, exhibits the best simulation performance overall. Specifically, only BCC-CSM2-HR can accurately reproduce the southern equatorial current in the Pacific Ocean, implying the benefits of an enhanced ocean component. Persistent biases are also identified in BCC models across CMIP5 to CMIP6, including substantial biases in sea surface salinity in the Arctic Ocean, warm biases in the intermediate and deep ocean, and notable salinity biases in the northern Indian Ocean. These biases are also commonly presented in other CMIP5 and CMIP6 models. Furthermore, this study evaluates how BCC models simulate modes of climate variability, such as ENSO (El Ni & ntilde;o-Southern Oscillation), PDO (Pacific Decadal Oscillation), and NPGO (North Pacific Gyre Oscillation). Future plans are also outlined, including the online integration of an ocean surface wave model and the refinement of model resolution, for development efforts aimed at bolstering the accuracy and reliability of BCC model simulations of ocean climatology.
引用
收藏
页码:921 / 951
页数:31
相关论文
共 50 条
  • [11] Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models
    Arora, Vivek K.
    Katavouta, Anna
    Williams, Richard G.
    Jones, Chris D.
    Brovkin, Victor
    Friedlingstein, Pierre
    Schwinger, Jorg
    Bopp, Laurent
    Boucher, Olivier
    Cadule, Patricia
    Chamberlain, Matthew A.
    Christian, James R.
    Delire, Christine
    Fisher, Rosie A.
    Hajima, Tomohiro
    Ilyina, Tatiana
    Joetzjer, Emilie
    Kawamiya, Michio
    Koven, Charles D.
    Krasting, John P.
    Law, Rachel M.
    Lawrence, David M.
    Lenton, Andrew
    Lindsay, Keith
    Pongratz, Julia
    Raddatz, Thomas
    Seferian, Roland
    Tachiiri, Kaoru
    Tjiputra, Jerry F.
    Wiltshire, Andy
    Wu, Tongwen
    Ziehn, Tilo
    BIOGEOSCIENCES, 2020, 17 (16) : 4173 - 4222
  • [12] Improvement in wintertime mixed layer depth simulation by CMIP6 compared to CMIP5 climate models
    Xu, Tengfei
    Jin, Shanshan
    Nie, Xunwei
    Qiu, Zishan
    Liu, Hao
    Li, Ying
    Wei, Zexun
    OCEAN MODELLING, 2025, 196
  • [13] Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models
    Sen, Arnab
    Deb, Pranab
    Matthews, Adrian J.
    Joshi, Manoj M.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, 150 (765) : 5020 - 5036
  • [14] Regional Dynamic Sea Level Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future Projections, and Their Linkages
    Lyu, Kewei
    Zhang, Xuebin
    Church, John A.
    JOURNAL OF CLIMATE, 2020, 33 (15) : 6377 - 6398
  • [15] The improvements of sea surface temperature simulation over China Offshore Sea in present climate from CMIP5 to CMIP6 models
    Deng, Rong
    Qiao, Shaobo
    Zhu, Xian
    Dong, Tianyun
    Feng, Guolin
    Dong, Wenjie
    CLIMATE DYNAMICS, 2023, 61 (11-12) : 5111 - 5130
  • [16] Evaluation of the Antarctic Circumpolar Wave Simulated by CMIP5 and CMIP6 Models
    Lu, Zhichao
    Zhao, Tianbao
    Zhou, Weican
    ATMOSPHERE, 2020, 11 (09)
  • [17] The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5
    Davy, Richard
    Outten, Stephen
    JOURNAL OF CLIMATE, 2020, 33 (18) : 8047 - 8068
  • [18] The Response of the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models
    Harvey, B. J.
    Cook, P.
    Shaffrey, L. C.
    Schiemann, R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (23)
  • [19] Assessment and Ranking of Climate Models in Arctic Sea Ice Cover Simulation: From CMIP5 to CMIP6
    Shen, Zili
    Duan, Anmin
    Li, Dongliang
    Li, Jinxiao
    JOURNAL OF CLIMATE, 2021, 34 (09) : 3609 - 3627
  • [20] Evaluating biases in simulated land surface albedo from CMIP5 global climate models
    Li, Yue
    Wang, Tao
    Zeng, Zhenzhong
    Peng, Shushi
    Lian, Xu
    Piao, Shilong
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (11) : 6178 - 6190