(Two-scale) W1LΦ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1}L^{\Phi }$$\end{document}-gradient Young measures and homogenization of integral functionals in Orlicz–Sobolev spaces

被引:0
作者
Joel Fotso Tachago [1 ]
Hubert Nnang [2 ]
Franck Tchinda [3 ]
Elvira Zappale [4 ]
机构
[1] University of Bamenda,Department of Mathematics, Higher Teachers Training College
[2] University of Yaounde I Higher Teachers Training College,Department of Mathematics
[3] Department of Mathematics and Computer Science,University of Maroua
[4] Sapienza-University of Rome,Department of Basic and Applied Sciences for Engineering
关键词
Gradient Young measures; Homogenization; Orlicz–Sobolev spaces; -Convergence; Two-scale convergence; 49J45; 74Q05;
D O I
10.1007/s41808-024-00294-4
中图分类号
学科分类号
摘要
(Two-scale) gradient Young measures in Orlicz–Sobolev setting are introduced and characterized providing also an integral representation formula for non convex energies arising in homogenization problems with nonstandard growth.
引用
收藏
页码:1275 / 1299
页数:24
相关论文
共 62 条
[1]  
Allaire G(1992)Homogenization and two scale convergence SIAM. J. Math. Anal. 23 1482-1518
[2]  
Babadjian J-F(2007)Characterization of two-scale gradient Young measures and application to homogenization Appl. Math. Optim. 57 69-97
[3]  
Baia M(2007)The limit behavior of a family of variational multiscale problems Indiana Univ. Math. J. 56 1-50
[4]  
Santos PM(2007)Loss of polyconvexity by homogenization: a new example Calc. Var. Partial Differ. Eq. 30 215-230
[5]  
Baia M(2003)A new proof of semicontinuity by Young measures and an approximation theorem in Orlicz–Sobolev spaces Abstr. Appl. Anal. 15 881-898
[6]  
Fonseca I(2004)Homogenization of nonlinear integrals via the periodic unfolding method C. R. Math. Acad. Sci. Paris 339 77-82
[7]  
Barchiesi M(2006)Homogenization of quasiconvex integrals via the periodic unfolding method SIAM J. Math. Anal. 37 1435-1453
[8]  
Bianconi B(2002)Periodic unfolding and homogenization C. R. Math. Acad. Sci. Paris 335 99-104
[9]  
Cioranescu D(2008)The periodic unfolding method in homogenization SIAM J. Math. Anal. 40 1585-1620
[10]  
Damlamian A(2001)On the wellposedness of constitutive laws involving dissipation potentials Trans. Am. Math. Soc. 353 5095-5120