A Novel Mesalamine Loaded Hybrid Nanoparticle-in-Microparticle for Colon Targeting: In-vitro and In-vivo Investigations

被引:1
作者
Gautam, Preety [1 ]
Akhter, Md Habban [1 ]
Anand, Anubhav [2 ]
机构
[1] DIT Univ, Sch Pharmaceut & Populat Hlth Informat SoPPHI, Divers Rd, Makka Wala 248009, Uttarakhand, India
[2] Hygia Inst Pharmaceut Educ & Res HIPER, Dept Pharmaceut, Ghaila Rd, Lucknow 226020, Uttar Pradesh, India
关键词
Nanoparticle-in-microparticle; Nanoparticles; Ethyl cellulose; Eudragit L100; Eudragit S100; Colon targeting; Ulcerative colitis; Inflammatory bowel disease; Dual coating approach; Hybrid system; System-within-system; INFLAMMATORY-BOWEL-DISEASE; ULCERATIVE-COLITIS; PH; FORMULATION; DELIVERY; MICROSPHERES; OPTIMIZATION; COMBINATION; MESALAZINE; BEADS;
D O I
10.1007/s12247-024-09882-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Purpose Pharmaceutical research continues to focus on developing novel approaches for the effective treatment of ulcerative colitis (UC). To develop a better system than simple nanoparticle-in-microparticle (NP-in-MP), time-dependent NP or MP, and pH-dependent NP or MP, this work sought to construct an enhanced colon-targeting system with a combination of hybrid formulations and dual coating approach consisting of time-dependent nanoparticles loaded in pH-dependent microparticles. Method The model drug used was mesalamine, and the polymers used were ethyl cellulose (EC) as time dependent polymer and a mixture of Eudragit L100 (EL100) and Eudragit S100 (ES100) as pH dependent polymer. The NP-in-MP were optimized, prepared and characterized to obtain targeted and sustained delivery of drug. The NP were coated with ethyl cellulose to obtain sustained delivery. Then NP were entrapped within eudragit MP using the double emulsion solvent evaporation process. NP-in-MP were evaluated for particle size, entrapment efficiency, surface morphology, in-vitro drug release and in-vivo evaluation. Results The particle size and entrapment efficiency of the selected formulation was 12.4 +/- 3.1 mu m and 85.36 +/- 2.6%. The in vitro drug release profile verified that the selected formulation released (6.94 +/- 1.23%) less than 10% of the drug in an acidic environment, followed by continuous drug release (93.9 +/- 3.15%) in a colonic environment. The MPO level confirmed that the maximum recovery (i.e., decrease in MPO level) was observed for NP-in-MP (3.02 +/- 0.33, ***P < 0.001) followed by NP (6.2 +/- 0.51) compared with disease control. NP-in-MP substantially improved body weight, diarrhea score and rectal bleeding (***P < 0.001) which indicates mucosal healing and the mitigation of inflammation. The NP-in-MP significantly increased colon length (***P < 0.001) and reduced spleen weight (**P < 0.01) in comparison to disease control. NP-in-MP also showed improved histological results compared to those of the other treatment groups. Conclusion The current findings demonstrate the efficient development of NP-in-MP for enhancing the delivery of NP to the colonic region. The in-vitro data confirms that the NP-in-MP prevented burst release of NP and also targeted them to the colon along with sustained delivery of their payload. The in-vivo data confirms that the NP-in-MP are better in treating colitis than NP. Therefore, it was concluded that a hybrid NP-in-MP can be a potential alternative than other treatment carriers to treat inflammatory bowel disease and colorectal cancer. [GRAPHICS]
引用
收藏
页数:16
相关论文
共 50 条
[31]   Dual-action of clotrimazole loaded - nanosponges vaginal gel for spermicidal action and treatment of vaginal candidiasis: Optimization, in-vitro, ex-vivo, and in-vivo experiments [J].
Helal, Doaa A. ;
Osama, Amr ;
El-Nabarawi, Mohamed A. ;
Teaima, Mahmoud Hassan ;
Al-Samadi, Inas Essam Ibrahim .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 670
[32]   In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications [J].
Betzer, Oshra ;
Meir, Rinat ;
Dreifuss, Tamar ;
Shamalov, Katerina ;
Motiei, Menachem ;
Shwartz, Amit ;
Baranes, Koby ;
Cohen, Cyrille J. ;
Shraga-Heled, Niva ;
Ofir, Racheli ;
Yadid, Gal ;
Popovtzer, Rachela .
SCIENTIFIC REPORTS, 2015, 5
[33]   Enhanced Anticancer Efficacy of Noscapine-Loaded Lipid Nanocapsules: In-vitro and In-vivo Evaluation [J].
Abdel-Wahab, Nadeen Diaa ;
Kabil, Mohamed Fawzi ;
El-Sherbiny, Ibrahim M. ;
Salama, Mohamed F. ;
El-Sayed, Gehad ;
El-Sherbini, El-Said .
EGYPTIAN JOURNAL OF CHEMISTRY, 2024, 67 (08) :409-422
[34]   Bioavailability enhanced clopidogrel-loaded solid SNEDDS: Development and in-vitro/in-vivo characterization [J].
Abd-Elhakeem, Eman ;
Teaima, Mahmoud H. M. ;
Abdelbary, Ghada A. ;
El Mahrouk, Galal M. .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2019, 49 :603-614
[35]   Paclitaxel and spirulina co-loaded polymeric nanoparticles: in-vitro and in-vivo anticancer study [J].
Ravikumar, Yamuna ;
Catherine, Dorcas Pinky ;
Nair, Keerthi G. S. ;
Sekar, Akshya ;
Velmurugan, Ramaiyan .
BRAZILIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 56
[36]   In-vivo and in-vitro assessment of curcumin loaded bile salt stabilized nanovesicles for oral delivery [J].
Hashem, Fahima M. ;
Elkhateeb, Dalia ;
Ali, Marwa M. ;
Abdel-Rashid, Rania S. .
DARU-JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 33 (01)
[37]   Formulation development and in-vitro/in-vivo correlation for a novel sterculia gum-based oral colon-targeted drug delivery system of azathioprine [J].
Nath, Bipul ;
Nath, Lila Kanta .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2013, 39 (11) :1765-1773
[38]   Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment [J].
Hosny, Khaled M. ;
Rizg, Waleed Y. ;
Alkhalidi, Hala M. ;
Abualsunun, Walaa A. ;
Bakhaidar, Rana B. ;
Almehmady, Alshaimaa M. ;
Alghaith, Adel F. ;
Alshehri, Sultan ;
El Sisi, Amani M. .
DRUG DELIVERY, 2021, 28 (01) :1836-1848
[39]   Docetaxel Loaded PEG-PLGA Nanoparticles: Optimized Drug Loading, In-vitro Cytotoxicity and In-vivo Antitumor Effect [J].
Koopaei, Mona Noori ;
Khoshayand, Mohammad Reza ;
Mostafavi, Seyed Hossein ;
Amini, Mohsen ;
Khorramizadeh, Mohammad Reza ;
Tehrani, Mahmood Jeddi ;
Atyabi, Fatemeh ;
Dinarvand, Rassoul .
IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, 2014, 13 (03) :819-833
[40]   Thermoresponsive biomaterial system of irinotecan and curcumin for the treatment of colorectal cancer: in-vitro and in-vivo investigations [J].
Maryiam, Aleena ;
Batool, Sibgha ;
Ali, Zakir ;
Zahid, Fatima ;
Alamri, Ali H. ;
Alqahtani, Taha ;
Fatease, Adel Al ;
Lahiq, Ahmed A. ;
Khan, Muhammad Waseem ;
Din, Fakhar ud .
PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2025, 30 (01) :37-56