Numerical approximation of nonlinear stochastic Volterra integral equation based on Walsh function

被引:0
|
作者
Paikaray P.P. [1 ]
Parida N.C. [1 ]
Beuria S. [1 ]
Nikan O. [2 ]
机构
[1] Department of Mathematics, College of Basic Science and Humanities, OUAT, Bhubaneswar
[2] School of Mathematics and Computer Science, Iran University of Science and Technology, Tehran
关键词
60H05; 65C30; Brownian motion; Collocation method; Ito^ integral; Lipschitz condition; Non-linear stochastic Volterra integral equation; Walsh approximation;
D O I
10.1007/s40324-023-00341-5
中图分类号
学科分类号
摘要
This paper adopts a highly effective numerical approach for approximating non-linear stochastic Volterra integral equations (NLSVIEs) based on the operational matrices of the Walsh function and the collocation method. The method transforms the integral equation into a system of algebraic equations, which allows for the derivation of an approximate solution. Error analysis is performed, confirming the effectiveness of the proposed method, which results in a linear order of convergence. Numerical examples are provided to illustrate the precision and effectiveness of the proposed method. © The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2023.
引用
收藏
页码:665 / 678
页数:13
相关论文
共 50 条
  • [1] Numerical approximation of p-dimensional stochastic Volterra integral equation using Walsh function
    Paikaray, Prit Pritam
    Beuria, Sanghamitra
    Parida, Nigam Chandra
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 31 (04): : 448 - 460
  • [2] Numerical Approximation of Stochastic Volterra-Fredholm Integral Equation using Walsh Function
    Paikaray, Prit Pritam
    Beuria, Sanghamitra
    Parida, Nigam Chandra
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (05): : 1603 - 1613
  • [3] A combination method for numerical solution of the nonlinear stochastic Ito-Volterra integral equation
    Wen, Xiaoxia
    Huang, Jin
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 407
  • [4] Numerical solution of nonlinear stochastic integral equation by stochastic operational matrix based on Bernstein polynomials
    Asgari, Mahnaz
    Hashemizadeh, Elham
    Khodabin, Morteza
    Maleknejad, Khosrow
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01): : 3 - 12
  • [5] Numerical solution of nonlinear stochastic Ito - Volterra integral equation driven by fractional Brownian motion
    Saha Ray, S.
    Singh, S.
    ENGINEERING COMPUTATIONS, 2020, 37 (09) : 3243 - 3268
  • [6] NUMERICAL SOLUTION OF STOCHASTIC NONLINEAR VOLTERRA INTEGRAL EQUATIONS BY A STOCHASTIC OPERATIONAL MATRIX BASED ON HAAR WAVELETS
    Farahani, B.
    Khodabin, M.
    Ezzati, R.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 48 (05) : 317 - 336
  • [7] A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
    Momenzade, N.
    Vahidi, A. R.
    Babolian, E.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (01): : 145 - 164
  • [8] Numerical solution of stochastic Ito-Volterra integral equation by using Shifted Jacobi operational matrix method
    Ray, S. Saha
    Singh, P.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410 (410)
  • [9] An iterative technique for the numerical solution of nonlinear stochastic Ito -Volterra integral equations
    Saffarzadeh, M.
    Loghmani, G. B.
    Heydari, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 74 - 86
  • [10] Existence, uniqueness, and numerical approximation of solutions of a nonlinear functional integral equation
    Bazm, Sohrab
    Hosseini, Alireza
    Azevedo, Juarez S.
    Pahlevani, Fatemeh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 439