Jacobson's Lemma for Spectral Idempotents in Banach Algebras

被引:0
作者
Peng, Fei [1 ]
Zhang, Xiaoxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Jacobson's lemma; Spectral idempotent; Drazin inverse relative to a spectral set; Generalized Drazin inverse; Generalized Drazin-Riesz inverse; LINEAR-OPERATORS RS; INVERSES;
D O I
10.1007/s11785-024-01616-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b be elements in a complex Banach algebra with unity e. In this note, formulas are given for expressing the spectral idempotent of e-ba\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ba$$\end{document} associated with sigma:=boolean OR k=1m sigma i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma := \cup _{k = 1}<^>m\sigma _i$$\end{document} in terms of that of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document}, where sigma 1,sigma 2,...,sigma m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1, \sigma _2,..., \sigma _m$$\end{document} are finitely many pairwise disjoint spectral sets of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document} such that 1 is not in the convex hull of each sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document} with 1 <= k <= m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k \le m$$\end{document}. As an application, we establish the relation between the Drazin inverses of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document} and e-ba\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ba$$\end{document} both relative to sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, which leads to a new way to recapture Jacobson's lemma for the generalized Drazin inverse and generalized Drazin-Riesz inverse.
引用
收藏
页数:11
相关论文
共 24 条
[21]   New results on common properties of bounded linear operators RS and SR [J].
Zeng, Qing Ping ;
Zhong, Huai Jie .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (10) :1871-1884
[22]   Generalized symmetric *-rings and Jacobson's Lemma for Moore-Penrose inverse [J].
Zhang, Xiaoxiang ;
Chen, Jianlong ;
Wang, Long .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4) :321-329
[23]   Jacobson's lemma for the generalized Drazin inverse [J].
Zhuang, Guifen ;
Chen, Jianlong ;
Cui, Jian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) :742-746
[24]   Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators [J].
Zivkovic-Zlatanovic, Snezana C. ;
Cvetkovic, Milos D. .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06) :1171-1193