Jacobson's Lemma for Spectral Idempotents in Banach Algebras

被引:0
作者
Peng, Fei [1 ]
Zhang, Xiaoxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Jacobson's lemma; Spectral idempotent; Drazin inverse relative to a spectral set; Generalized Drazin inverse; Generalized Drazin-Riesz inverse; LINEAR-OPERATORS RS; INVERSES;
D O I
10.1007/s11785-024-01616-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b be elements in a complex Banach algebra with unity e. In this note, formulas are given for expressing the spectral idempotent of e-ba\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ba$$\end{document} associated with sigma:=boolean OR k=1m sigma i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma := \cup _{k = 1}<^>m\sigma _i$$\end{document} in terms of that of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document}, where sigma 1,sigma 2,...,sigma m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1, \sigma _2,..., \sigma _m$$\end{document} are finitely many pairwise disjoint spectral sets of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document} such that 1 is not in the convex hull of each sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document} with 1 <= k <= m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le k \le m$$\end{document}. As an application, we establish the relation between the Drazin inverses of e-ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ab$$\end{document} and e-ba\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e - ba$$\end{document} both relative to sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, which leads to a new way to recapture Jacobson's lemma for the generalized Drazin inverse and generalized Drazin-Riesz inverse.
引用
收藏
页数:11
相关论文
共 24 条
[1]   A note on the generalized Drazin-Riesz invertible operators [J].
Abad, Othman ;
Zguitti, Hassane .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
[2]   Common operator properties of the linear operators RS and SR [J].
Barnes, BA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :1055-1061
[3]   Local spectral theory of linear operators RS and SR [J].
Benhida, C ;
Zerouali, EH .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (01) :1-8
[4]   ASCENT, DESCENT, NULLITY AND DEFECT OF PRODUCTS OF OPERATORS [J].
BUONI, JJ ;
FAIRES, JD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (07) :703-707
[5]   GENERALIZED INVERSES OF A SUM IN RINGS [J].
Castro-Gonzalez, N. ;
Mendes-Araujo, C. ;
Patricio, Pedro .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) :156-164
[6]   UNIT-REGULARITY AND STABLE RANGE ONE [J].
Chen, Huanyin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (03) :653-661
[7]   n-tuples of operators satisfying σT (AB)=σT (BA) [J].
Cho, M ;
Curto, RE ;
Huruya, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 341 (1-3) :291-298
[8]   On Jacobson's lemma and Drazin invertibility [J].
Cvetkovic-Ilic, Dragana ;
Harte, Robin .
APPLIED MATHEMATICS LETTERS, 2010, 23 (04) :417-420
[9]   The σg-Drazin inverse and the generalized Mbekhta decomposition [J].
Dajic, A. ;
Koliha, J. J. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 57 (03) :309-326
[10]  
Heuser HG., 1982, FUNCTIONAL ANAL