Electrochemical nucleation and growth model of MoS2 for hydrogen evolution reaction

被引:0
|
作者
Reddy, Venumbaka Maneesh [1 ]
Chandra, Marepally Bhanu [2 ]
Gengan, Saravanan [3 ]
Duraisamy, Selvakumar [1 ]
机构
[1] PSG Inst Technol & Appl Res, Dept ECE, Coimbatore 641062, India
[2] Chaitanya Bharati Inst Technol, Hyderabad 500075, Telangana, India
[3] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Chem, Chennai 602105, Tamil Nadu, India
关键词
REDUCED GRAPHITE OXIDE; SINGLE-LAYER; EDGE SITES; NANOSHEETS; TRANSITION; GRAPHENE;
D O I
10.1186/s40543-024-00466-w
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrochemical nucleation of MoS2 from a mixture of sodium molybdate dihydrate (Na2MoO4<middle dot>2H2O) and sodium sulphide (Na2S<middle dot>xH2O) aqueous solution on Cu substrate has been investigated. The nucleation and formation of molybdenum sulphide were investigated employing cyclic voltammetry and chronoamperometry studies. The experimental i-t curves observed at various overpotentials were compared to theoretical curves derived for the two limiting situations of the 3D instantaneous/progressive nucleation and growth model, as reported by Scharifker and Hills. The outcome of electrodeposition potential on nucleation rate (A) and nucleation density (N) was calculated from the current-time transients and SEM morphology obtained at - 1.1 V (5.75 x 1014 and 1.86 x 1015) was compared with - 0.9 V, - 1.0 V, and - 1.2 V, respectively. The investigation of the initial stages of the transient current-time relationships developed for MoS2 electrodeposition specified that film formation occurred progressively initially and instantaneous nucleation during the course of time. A HPMoS2 with an average size of 5-65 nm was obtained at -1.1 V and exhibited superior performance towards the hydrogen evolution reaction compared to samples obtained at - 0.9 V, - 1.0 V, and - 1.2 V.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Layer by Layer Deposition of 1T′-MoS2 for the Hydrogen Evolution Reaction
    Alimohammadi, Farbod
    Yasini, Parisa
    Marshall, Tim
    Attanayake, Nuwan H.
    Borguet, Eric
    Strongin, Daniel R.
    CHEMISTRYSELECT, 2022, 7 (07):
  • [32] Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS2 Nanosheets and Hydrogenated Graphene
    Han, Xiuxiu
    Tong, Xili
    Liu, Xingchen
    Chen, Ai
    Wen, Xiaodong
    Yang, Nianjun
    Guo, Xiang-Yun
    ACS CATALYSIS, 2018, 8 (03): : 1828 - 1836
  • [33] Influence of Group III and IV Elements on the Hydrogen Evolution Reaction of MoS2 Disulfide
    Chen, Shuang
    Pan, Yong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (22) : 11848 - 11856
  • [34] Nanocatalysis MoS2/rGO: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction
    Guzman-Olivos, Fernando
    Hernandez-Saravia, Lucas Patricio
    Nelson, Ronald
    Perez, Maria de los Angeles
    Villalobos, Francisco
    MOLECULES, 2024, 29 (02):
  • [35] Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets
    Wang, Junhui
    Yan, Mengyu
    Zhao, Kangning
    Liao, Xiaobin
    Wang, Peiyao
    Pan, Xuelei
    Yang, Wei
    Mai, Liqiang
    ADVANCED MATERIALS, 2017, 29 (07)
  • [36] Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction
    Ye, Gonglan
    Gong, Yongji
    Lin, Junhao
    Li, Bo
    He, Yongmin
    Pantelides, Sokrates T.
    Zhou, Wu
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANO LETTERS, 2016, 16 (02) : 1097 - 1103
  • [37] Aun atomic clusters on MoS2 nanosheets for hydrogen evolution reaction
    Tian, Jiaqi
    Hou, Lei
    Pei, Wei
    Yu, Xueke
    SURFACES AND INTERFACES, 2025, 56
  • [38] The Origin of High Activity of Amorphous MoS2 in the Hydrogen Evolution Reaction
    Wu, Longfei
    Longo, Alessandro
    Dzade, Nelson Y.
    Sharma, Akhil
    Hendrix, Marco M. R. M.
    Bol, Ageeth A.
    de Leeuw, Nora H.
    Hensen, Emiel J. M.
    Hofmann, Jan P.
    CHEMSUSCHEM, 2019, 12 (19) : 4383 - 4389
  • [39] Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction
    Kim, Kisun
    Tiwari, Anand P.
    Hyun, Gayea
    Novak, Travis G.
    Jeon, Seokwoo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (52) : 28143 - 28150
  • [40] Contact and Support Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS2 Electrodes
    Finn, Shane T.
    Macdonald, Janet E.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (38) : 25185 - 25192