Electrochemical nucleation and growth model of MoS2 for hydrogen evolution reaction

被引:0
|
作者
Reddy, Venumbaka Maneesh [1 ]
Chandra, Marepally Bhanu [2 ]
Gengan, Saravanan [3 ]
Duraisamy, Selvakumar [1 ]
机构
[1] PSG Inst Technol & Appl Res, Dept ECE, Coimbatore 641062, India
[2] Chaitanya Bharati Inst Technol, Hyderabad 500075, Telangana, India
[3] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Chem, Chennai 602105, Tamil Nadu, India
关键词
REDUCED GRAPHITE OXIDE; SINGLE-LAYER; EDGE SITES; NANOSHEETS; TRANSITION; GRAPHENE;
D O I
10.1186/s40543-024-00466-w
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrochemical nucleation of MoS2 from a mixture of sodium molybdate dihydrate (Na2MoO4<middle dot>2H2O) and sodium sulphide (Na2S<middle dot>xH2O) aqueous solution on Cu substrate has been investigated. The nucleation and formation of molybdenum sulphide were investigated employing cyclic voltammetry and chronoamperometry studies. The experimental i-t curves observed at various overpotentials were compared to theoretical curves derived for the two limiting situations of the 3D instantaneous/progressive nucleation and growth model, as reported by Scharifker and Hills. The outcome of electrodeposition potential on nucleation rate (A) and nucleation density (N) was calculated from the current-time transients and SEM morphology obtained at - 1.1 V (5.75 x 1014 and 1.86 x 1015) was compared with - 0.9 V, - 1.0 V, and - 1.2 V, respectively. The investigation of the initial stages of the transient current-time relationships developed for MoS2 electrodeposition specified that film formation occurred progressively initially and instantaneous nucleation during the course of time. A HPMoS2 with an average size of 5-65 nm was obtained at -1.1 V and exhibited superior performance towards the hydrogen evolution reaction compared to samples obtained at - 0.9 V, - 1.0 V, and - 1.2 V.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synthesis and electrochemical hydrogen evolution reaction properties of MoS2/Ru heterostructures
    Ma, Haixia
    Wang, Taihe
    Zhao, Yujie
    Wang, Xu
    Li, Jiachen
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (04): : 44 - 52
  • [2] Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction
    Wang, Dezhi
    Wang, Zhiping
    Wang, Changlong
    Zhou, Pan
    Wu, Zhuangzhi
    Liu, Zhihong
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 219 - 222
  • [3] Nanocrystalline NiSe2/MoS2 heterostructures for electrochemical hydrogen evolution reaction
    Huang, Yazhou
    Lv, Junyan
    Huang, Jiacai
    Xu, Kunshan
    Liu, Lei
    NANOTECHNOLOGY, 2021, 32 (17)
  • [4] MoS2 Moire Superlattice for Hydrogen Evolution Reaction
    Jiang, Zhenzhen
    Zhou, Wenda
    Hong, Aijun
    Guo, Manman
    Luo, Xingfang
    Yuan, Cailei
    ACS ENERGY LETTERS, 2019, 4 (12) : 2830 - 2835
  • [5] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Jianqi Zhu
    Zhi-Chang Wang
    Huijia Dai
    Qinqin Wang
    Rong Yang
    Hua Yu
    Mengzhou Liao
    Jing Zhang
    Wei Chen
    Zheng Wei
    Na Li
    Luojun Du
    Dongxia Shi
    Wenlong Wang
    Lixin Zhang
    Ying Jiang
    Guangyu Zhang
    Nature Communications, 10
  • [6] Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction
    Ghanashyam, Gyawali
    Jeong, Hae Kyung
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01) : 120 - 127
  • [7] Doped MoS2 Polymorph for an Improved Hydrogen Evolution Reaction
    Eidsvag, Hakon
    Vajeeston, Ponniah
    Velauthapillai, Dhayalan
    ACS OMEGA, 2023, 8 (29): : 26263 - 26275
  • [8] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Zhu, Jianqi
    Wang, Zhi-Chang
    Dai, Huijia
    Wang, Qinqin
    Yang, Rong
    Yu, Hua
    Liao, Mengzhou
    Zhang, Jing
    Chen, Wei
    Wei, Zheng
    Li, Na
    Du, Luojun
    Shi, Dongxia
    Wang, Wenlong
    Zhang, Lixin
    Jiang, Ying
    Zhang, Guangyu
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Improving hydrogen evolution reaction for MoS2 hollow spheres
    Lv Jinlong
    Guo Wenli
    Liang Tongxiang
    Ken, Suzuki
    Hideo, Miura
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 : 304 - 307
  • [10] Revisited Catalytic Hydrogen Evolution Reaction Mechanism of MoS2
    He, Yuhao
    Chen, Xiangpeng
    Lei, Yunchao
    Liu, Yongqi
    Wang, Longlu
    NANOMATERIALS, 2023, 13 (18)