New improvements of some classical inequalities

被引:0
|
作者
Gourty, Abdelmajid [1 ]
Ighachane, Mohamed Amine [2 ]
Kittaneh, Fuad [3 ,4 ]
机构
[1] Ibn Zohr Univ, Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
[2] Chouaib Doukkali Univ, Higher Sch Educ & Training El Jadida, Sci & Technol Team ESTE, El Jadida, Morocco
[3] Univ Jordan, Dept Math, Amman, Jordan
[4] Korea Univ, Dept Math, Seoul 02841, South Korea
关键词
Numerical radius; Mixed Schwarz inequality; Triangle inequality; Kato's inequality; Ecludien operator raduis; EUCLIDEAN OPERATOR RADIUS; NUMERICAL RADIUS;
D O I
10.1007/s13370-024-01218-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any E is an element of B(H),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}\in \mathcal {B}(\mathcal {H}),$$\end{document}u,v is an element of H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in \mathcal {H},$$\end{document} and 0 <=theta <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta \le 1$$\end{document}, |< Eu,v >|2 <= U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,v <=|E|2 theta u,uE & lowast;2(1-theta)v,v.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\langle \mathcal {E} u,v\rangle |<^>2&\le \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) \\ &\le \left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle . \end{aligned}$$\end{document}Moreover, we have U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,vn >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) \right) _{n \geqslant 0}$$\end{document} is an increasing sequence satisfying limn ->+infinity U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,v=|E|2 theta u,uE & lowast;2(1-theta)v,v,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim \limits _{n \rightarrow +\infty } \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) = \left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle , \end{aligned}$$\end{document}which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Some weighted norm inequalities for Hilbert C*-modules
    Liu, Jing
    Wu, Deyu
    Chen, Alatancang
    ADVANCES IN OPERATOR THEORY, 2025, 10 (01)
  • [32] Some norm inequalities for accretive Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 327 - 340
  • [33] SOME NUMERICAL RADIUS INEQUALITIES WITH POSITIVE DEFINITE FUNCTIONS
    Aghamollaei, G.
    Hosseini, Sheikh
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04) : 889 - 900
  • [34] SOME INEQUALITIES FOR THE NUMERICAL RADIUS AND RHOMBIC NUMERICAL RADIUS
    Bajmaeh, Akram Babri
    Omidvar, Mohsen Erfanian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 569 - 577
  • [35] Notes on some spectral radius and numerical radius inequalities
    Abu-Omar, Amer
    Kittaneh, Fuad
    STUDIA MATHEMATICA, 2015, 227 (02) : 97 - 109
  • [36] On Some Generalizations of Cauchy-Schwarz Inequalities and Their Applications
    Altwaijry, Najla
    Feki, Kais
    Minculete, Nicusor
    SYMMETRY-BASEL, 2023, 15 (02):
  • [37] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [38] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [39] Some numerical radius inequalities for tensor products of operators
    Aici, Soumia
    Frakis, Abdelkader
    Kittaneh, Fuad
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3543 - 3556
  • [40] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197