New improvements of some classical inequalities

被引:0
|
作者
Gourty, Abdelmajid [1 ]
Ighachane, Mohamed Amine [2 ]
Kittaneh, Fuad [3 ,4 ]
机构
[1] Ibn Zohr Univ, Fac Sci Agadir FSA, Math & Applicat Lab, Agadir, Morocco
[2] Chouaib Doukkali Univ, Higher Sch Educ & Training El Jadida, Sci & Technol Team ESTE, El Jadida, Morocco
[3] Univ Jordan, Dept Math, Amman, Jordan
[4] Korea Univ, Dept Math, Seoul 02841, South Korea
关键词
Numerical radius; Mixed Schwarz inequality; Triangle inequality; Kato's inequality; Ecludien operator raduis; EUCLIDEAN OPERATOR RADIUS; NUMERICAL RADIUS;
D O I
10.1007/s13370-024-01218-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any E is an element of B(H),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}\in \mathcal {B}(\mathcal {H}),$$\end{document}u,v is an element of H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in \mathcal {H},$$\end{document} and 0 <=theta <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta \le 1$$\end{document}, |< Eu,v >|2 <= U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,v <=|E|2 theta u,uE & lowast;2(1-theta)v,v.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |\langle \mathcal {E} u,v\rangle |<^>2&\le \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) \\ &\le \left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle . \end{aligned}$$\end{document}Moreover, we have U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,vn >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) \right) _{n \geqslant 0}$$\end{document} is an increasing sequence satisfying limn ->+infinity U(n,xi)eta,|< Eu,v >|,|E|2 theta u,uE & lowast;2(1-theta)v,v=|E|2 theta u,uE & lowast;2(1-theta)v,v,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim \limits _{n \rightarrow +\infty } \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle }\right) = \left\langle |\mathcal {E}|<^>{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}<^>*\right| <^>{2(1-\theta )} v, v\right\rangle , \end{aligned}$$\end{document}which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improvements of some Berezin radius inequalities
    Gurdal, Mehmet
    Alomari, Mohammad W.
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2022, 5 (03): : 141 - 153
  • [2] Improvements of Some Numerical Radius Inequalities
    Alomari, M. W.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (01): : 129 - 141
  • [3] SHARPENING SOME CLASSICAL NUMERICAL RADIUS INEQUALITIES
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    Shebrawi, Khalid
    OPERATORS AND MATRICES, 2018, 12 (02): : 407 - 416
  • [4] Some improvements of numerical radius inequalities of operators and operator matrices
    Bhunia, Pintu
    Paul, Kallol
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10) : 1995 - 2013
  • [5] New refinements of some classical inequalities via Young's inequality
    Ighachane, Mohamed Amine
    Kittaneh, Fuad
    Taki, Zakaria
    ADVANCES IN OPERATOR THEORY, 2024, 9 (03)
  • [6] SOME NEW OPERATOR INEQUALITIES
    Sababheh, Mohammad
    Moradi, Hamid Reza
    Gumus, Ibrahim Halil
    OPERATORS AND MATRICES, 2020, 14 (01): : 105 - 115
  • [7] SOME IMPROVEMENTS ABOUT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Changsen
    Li, Dan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (01): : 219 - 234
  • [8] Improvements of Berezin number inequalities
    Hajmohamadi, Monire
    Lashkaripour, Rahmatollah
    Bakherad, Mojtaba
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (06) : 1218 - 1229
  • [9] Some extended numerical radius inequalities
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    Sababheh, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 907 - 920
  • [10] On Some Inequalities for the Generalized Euclidean Operator Radius
    Alomari, Mohammad W.
    Bercu, Gabriel
    Chesneau, Christophe
    Alaqad, Hala
    AXIOMS, 2023, 12 (06)