Integrative determination of atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington disease

被引:0
|
作者
Helabad, Mahdi Bagherpoor [1 ,2 ,3 ]
Matlahov, Irina [4 ]
Kumar, Raj [5 ]
Daldrop, Jan O. [6 ]
Jain, Greeshma [4 ]
Weingarth, Markus [5 ]
van der Wel, Patrick C. A. [4 ]
Miettinen, Markus S. [1 ,6 ,7 ,8 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Theory & Biosyst, D-14476 Potsdam, Germany
[2] Univ Leipzig, Inst Drug Discovery, Med Ctr, D-04103 Leipzig, Germany
[3] Martin Luther Univ Halle Wittenberg, Inst Chem, D-06120 Halle, Saale, Germany
[4] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[5] Univ Utrecht, Bijvoet Ctr Biomol Res, Dept Chem, NMR Spect, NL-3584 CH Utrecht, Netherlands
[6] Free Univ Berlin, FACHBEREICH PHYS, D-14195 BERLIN, Germany
[7] Univ Bergen, Dept Chem, N-5007 Bergen, Norway
[8] Univ Bergen, Dept Informat, Computat Biol Unit, N-5008 Bergen, Norway
关键词
PARTICLE MESH EWALD; SOLID-STATE; AMYLOID FIBRILS; SIDE-CHAIN; POLYGLUTAMINE PEPTIDES; POLAR ZIPPERS; IN-VITRO; CRYO-EM; PROTEIN; AGGREGATION;
D O I
10.1038/s41467-024-55062-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts. We present and analyze the structure of fibrils formed by polyQ peptides and polyQ-expanded HTTex1 in vitro. Atomic-resolution perspectives are enabled by an integrative analysis and unrestrained all-atom molecular dynamics (MD) simulations incorporating experimental data from electron microscopy (EM), solid-state NMR, and other techniques. Alongside the use of prior data, we report magic angle spinning NMR studies of glutamine residues of the polyQ fibril core and surface, distinguished via hydrogen-deuterium exchange (HDX). Our study provides a molecular understanding of the structure of the core as well as surface of aggregated HTTex1, including the fuzzy coat and polyQ-water interface. The obtained data are discussed in context of their implications for understanding the detection of such aggregates (diagnostics) as well as known biological properties of the fibrils.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Determination of the tertiary structure of exon 1 Huntingtin
    Zuchner, T.
    Kazemi, A. R.
    Weigelt, J.
    Starikow, J.
    Tanaka, S.
    Rothstein, S.
    Brundin, P.
    JOURNAL OF NEUROCHEMISTRY, 2007, 101 : 65 - 66
  • [2] Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils
    Isas, J. Mario
    Langen, Andreas
    Isas, Myles C.
    Pandey, Nitin K.
    Siemer, Ansgar B.
    BIOCHEMISTRY, 2017, 56 (28) : 3579 - 3586
  • [3] Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease
    Landles, Christian
    Sathasivam, Kirupa
    Weiss, Andreas
    Woodman, Ben
    Moffitt, Hilary
    Finkbeiner, Steve
    Sun, Banghua
    Gafni, Juliette
    Ellerby, Lisa M.
    Trottier, Yvon
    Richards, William G.
    Osmand, Alex
    Paganetti, Paolo
    Bates, Gillian P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (12) : 8808 - 8823
  • [4] Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1
    van der Bent, M. Leontien
    Evers, Melvin M.
    Valles, Astrid
    BIOLOGICS-TARGETS & THERAPY, 2022, 16 : 141 - 160
  • [5] Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1
    Boatz, Jennifer C.
    Piretra, Talia
    Lasorsa, Alessia
    Matlahov, Irina
    Conway, James F.
    van der Wel, Patrick C. A.
    JOURNAL OF MOLECULAR BIOLOGY, 2020, 432 (16) : 4722 - 4744
  • [6] Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer
    Sahoo, Bankanidhi
    Arduini, Irene
    Drombosky, Kenneth W.
    Kodali, Ravindra
    Sanders, Laurie H.
    Greenamyre, J. Timothy
    Wetzel, Ronald
    PLOS ONE, 2016, 11 (06):
  • [7] Transcriptional profiles for distinct aggregation states of mutant Huntingtin exon 1 protein unmask new Huntington's disease pathways
    Moily, Nagaraj S.
    Ormsby, Angelique R.
    Stojilovic, Aleksandar
    Ramdzan, Yasmin M.
    Diesch, Jeannine
    Hannan, Ross D.
    Zajac, Michelle S.
    Hannan, Anthony J.
    Oshlack, Alicia
    Hatters, Danny M.
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2017, 83 : 103 - 112
  • [8] QUANTIFYING MUTANT HUNTINGTIN IN HUNTINGTON'S DISEASE CSF
    Wild, Edward
    Robertson, Nicola
    Miller, James
    Traeger, Ulrike
    Haider, Salman
    Macdonald, Douglas
    Langbehn, Douglas
    Kuhn, Rainer
    Weiss, Andreas
    Tabrizi, Sarah
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2014, 85 (10):
  • [9] Huntington's disease: degradation of mutant huntingtin by autophagy
    Sarkar, Sovan
    Rubinsztein, David C.
    FEBS JOURNAL, 2008, 275 (17) : 4263 - 4270
  • [10] Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease
    Wang, Chuan-En
    Tydlacka, Suzanne
    Orr, Adam L.
    Yang, Shang-Hsun
    Graham, Rona K.
    Hayden, Michael R.
    Li, Shihua
    Chan, Anthony W. S.
    Li, Xiao-Jiang
    HUMAN MOLECULAR GENETICS, 2008, 17 (17) : 2738 - 2751