Comparative analysis of machine learning approaches for predicting the risk of vaginal laxity

被引:0
|
作者
Zhao, Hongguo [1 ]
Liu, Peng [1 ]
Chen, Fei [1 ]
Wang, Mengjuan [1 ]
Liu, Jiaxi [1 ]
Fu, Xiling [1 ]
Yu, Hang [1 ]
Nai, Manman [1 ]
Li, Lei [1 ]
Li, Xinbin [2 ]
机构
[1] Zhengzhou Univ, Dept Obstet & Gynecol, Affiliated Hosp 3, Zhengzhou 450052, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Vaginal laxity; Machine learning; Modified Oxford muscle strength grading; Pelvic floor pressure assessment;
D O I
10.1038/s41598-025-86931-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study develops predictive models for Chinese female patients with VL utilizing machine learning techniques. The aim is to create an effective model that can assist in clinical diagnosis and treatment of vaginal relaxation, thereby enhancing women's pelvic floor health. In total, 1184 women with VL have been randomly selected and categorized into groups using the finger measurement method. Among them, there are 383 cases of mild VL, 405 cases of moderate VL, and 396 cases of severe VL. Concurrently, 396 healthy women without VL who underwent routine health examinations have been chosen at random and assigned to the non-VL group. Based on 1580 cases, we have established LightGBM, Random Forest, XGBoost, and AdaBoost models based on training dataset using 5-fold cross-validation and GridSearch, and analyzed the performance of the models on the hold-out test dataset. The confusion matrix, precision, recall, F1 score, overall accuracy, and ROC curve of the models on the hold-out test dataset are compared. The overall accuracy of LightGBM model, RF model, XGBoost model, and AdaBoost model are 0.8987, 0.8987, 0.8987, and 0.8457, respectively. The average AUC of LightGBM model is 0.976, the one of RF model is 0.9763, the one of XGBoost model is 0.9775, and the one of AdaBoost model is 0.928. The XGBoost model has the more comprehensive and reasonable performance among the four prediction models, which can accurately distinguish between healthy, mild VL, as well as moderate VL and severe VL, which can assist doctors in diagnosing persons' conditions more accurately, devising personalized treatment plans, avoiding unnecessary surgeries, reducing persons' psychological stress, improving patient compliance and treatment outcomes, thus enhancing overall treatment results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Predicting Location of Tweets Using Machine Learning Approaches
    Alsaqer, Mohammed
    Alelyani, Salem
    Mohana, Mohamed
    Alreemy, Khalid
    Alqahtani, Ali
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [32] Machine Learning Approaches for Predicting Protein Complex Similarity
    Farhoodi, Roshanak
    Akbal-Delibas, Bahar
    Haspel, Nurit
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (01) : 40 - 51
  • [33] Predicting Employee Attrition Using Machine Learning Approaches
    Raza, Ali
    Munir, Kashif
    Almutairi, Mubarak
    Younas, Faizan
    Fareed, Mian Muhammad Sadiq
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [34] Predicting Football Match Outcomes With Machine Learning Approaches
    Choi B.S.
    Foo L.K.
    Chua S.-L.
    Mendel, 2023, 29 (02) : 229 - 236
  • [35] Predicting Risk for Patent Ductus Arteriosus in the Neonate: A Machine Learning Analysis
    Jura, Ana Maria Cristina
    Popescu, Daniela Eugenia
    Citu, Cosmin
    Biris, Marius
    Pienar, Corina
    Paul, Corina
    Petrescu, Oana Maria
    Constantin, Andreea Teodora
    Dinulescu, Alexandru
    Rosca, Ioana
    MEDICINA-LITHUANIA, 2025, 61 (04):
  • [36] A comprehensive comparative analysis of machine learning models for predicting heating and cooling loads
    Abdelkader, Eslam Mohammed
    Al-Sakkaf, Abobakr
    Ahmed, Reem
    DECISION SCIENCE LETTERS, 2020, 9 (03) : 409 - 420
  • [37] Comparative Analysis of Machine Learning Methods for Predicting Energy Recovery from Waste
    Kulisz, Monika
    Kujawska, Justyna
    Cioch, Michal
    Cel, Wojciech
    Pizon, Jakub
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [38] Machine Learning Models for Predicting Stroke Mortality in Malaysia: An Application and Comparative Analysis
    Nawi, Che Muhammad Nur Hidayat Che
    Hairon, Suhaily Mohd
    Yahya, Wan Nur Nafisah Wan
    Zaidi, Wan Asyraf Wan
    Musa, Kamarul Imran
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (12)
  • [39] Comparative analysis of machine learning algorithms for predicting standard time in a manufacturing environment
    Cakit, Erman
    Dagdeviren, Metin
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2023, 37
  • [40] Comparative analysis of machine learning techniques for predicting production capability of crop yield
    Kalpana Jain
    Naveen Choudhary
    International Journal of System Assurance Engineering and Management, 2022, 13 : 583 - 593