Homogeneous Functions on Hilbert Spaces and Quasiconformal Transformations of the Sphere

被引:0
|
作者
M. V. Kurkina [1 ]
V. V. Slavsky [1 ]
机构
[1] Yugra State University, Khanty-Mansiisk
关键词
53A07; conformally convex function; conformally flat metric; homogeneous function; Legendre transform; quasiconformal mapping;
D O I
10.1007/s10958-025-07647-x
中图分类号
学科分类号
摘要
By using homogeneous functions in a Hilbert space, a wide class of quasiconformal transformations of the sphere is constructed and examined. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
引用
收藏
页码:884 / 889
页数:5
相关论文
共 50 条
  • [41] Hardy-Hilbert-Type Inequalities with a Homogeneous Kernel in Discrete Case
    Pecaric, Josip
    Vukovic, Predrag
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [42] Hardy-Hilbert-Type Inequalities with a Homogeneous Kernel in Discrete Case
    Josip Pečarić
    Predrag Vuković
    Journal of Inequalities and Applications, 2010
  • [43] The Zermelo conditions and higher order homogeneous functions
    Urban, Zbynek
    Krupka, Demeter
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 59 - 76
  • [44] GENERALIZATION OF THE THOMSON FORMULA FOR HOMOGENEOUS HARMONIC FUNCTIONS
    Berdnikov, A. S.
    Gall, L. N.
    Gall, N. R.
    Solovyev, K., V
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2019, 12 (02): : 49 - 62
  • [45] Higher-order homogeneous functions: Classification
    Krupka, Demeter
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 99 (3-4): : 495 - 505
  • [46] ESTIMATES FOR CONE MULTIPLIERS ASSOCIATED WITH HOMOGENEOUS FUNCTIONS
    Hong, Sunggeum
    Kim, Joonil
    Yang, Chan Woo
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (01) : 117 - 132
  • [47] On more accurate Hilbert-type inequalities in finite measure spaces
    Mario Krnić
    Josip Pečarić
    Collectanea Mathematica, 2014, 65 : 143 - 154
  • [48] On more accurate Hilbert-type inequalities in finite measure spaces
    Krnic, Mario
    Pecaric, Josip
    COLLECTANEA MATHEMATICA, 2014, 65 (01) : 143 - 154
  • [49] GENERALIZED HOMOGENEOUS FUNCTIONS AND THE TWO-BODY PROBLEM
    C.Biasi
    S.M.S.Godoy
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (02) : 171 - 178
  • [50] On the smoothness condition in Euler's theorem on homogeneous functions
    Dobbs, David E.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2018, 49 (08) : 1250 - 1259