Risk prediction modeling for cardiorenal clinical outcomes in patients with non-diabetic CKD using US nationwide real-world data

被引:0
作者
Wanner, Christoph [1 ]
Schuchhardt, Johannes [2 ]
Bauer, Chris [2 ]
Brinker, Meike [3 ]
Kleinjung, Frank [4 ]
Vaitsiakhovich, Tatsiana [4 ]
机构
[1] Univ Klin Wurzburg, Med Klin & Poliklin 1, Schwerpunkt Nephrol, Wurzburg, Germany
[2] Microdiscovery Gmbh, Berlin, Germany
[3] Bayer AG, Wuppertal, Germany
[4] Bayer AG, Berlin, Germany
关键词
Non-diabetic chronic kidney disease; End-stage kidney disease; Kidney failure; Dialysis; Hospitalization for heart failure; Hypertension; Risk prediction; Real-world evidence; CHRONIC KIDNEY-DISEASE; HEART-FAILURE HOSPITALIZATIONS; PROGRESSION; EPIDEMIOLOGY; DEATH;
D O I
10.1186/s12882-024-03906-2
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
BackgroundChronic kidney disease (CKD) is a global health problem, affecting over 840 million individuals. CKD is linked to higher mortality and morbidity, partially mediated by higher cardiovascular risk and worsening kidney function. This study aimed to identify risk factors and develop risk prediction models for selected cardiorenal clinical outcomes in patients with non-diabetic CKD.MethodsThe study included adults with non-diabetic CKD (stages 3 or 4) from the Optum (R) Clinformatics (R) Data Mart US healthcare claims database. Three outcomes were investigated: composite outcome of kidney failure/need for dialysis, hospitalization for heart failure, and worsening of CKD from baseline. Multivariable time-to-first-event risk prediction models were developed for each outcome using swarm intelligence methods. Model discrimination was demonstrated by stratifying cohorts into five risk groups and presenting the separation between Kaplan-Meier curves for these groups.ResultsThe prediction model for kidney failure/need for dialysis revealed stage 4 CKD (hazard ratio [HR] = 2.05, 95% confidence interval [CI] = 2.01-2.08), severely increased albuminuria-A3 (HR = 1.58, 95% CI = 1.45-1.72), metastatic solid tumor (HR = 1.58, 95% CI = 1.52-1.64), anemia (HR = 1.42, 95% CI = 1.41-1.44), and proteinuria (HR = 1.40, 95% CI = 1.36-1.43) as the strongest risk factors. History of heart failure (HR = 2.42, 95% CI = 2.37-2.48), use of loop diuretics (HR = 1.65, 95% CI = 1.62-1.69), severely increased albuminuria-A3 (HR = 1.55, 95% CI = 1.33-1.80), atrial fibrillation or flutter (HR = 1.53, 95% CI = 1.50-1.56), and stage 4 CKD (HR = 1.48, 95% CI = 1.44-1.52) were the greatest risk factors for hospitalization for heart failure. Stage 4 CKD (HR = 2.90, 95% CI = 2.83-2.97), severely increased albuminuria-A3 (HR = 2.30, 95% CI = 2.09-2.53), stage 3 CKD (HR = 1.74, 95% CI = 1.71-1.77), polycystic kidney disease (HR = 1.68, 95% CI = 1.60-1.76), and proteinuria (HR = 1.55, 95% CI = 1.50-1.60) were the main risk factors for worsening of CKD stage from baseline. Female gender and normal-to-mildly increased albuminuria-A1 were found to be associated with lower risk in all prediction models for patients with non-diabetic CKD stage 3 or 4.ConclusionsRisk prediction models to identify individuals with non-diabetic CKD at high risk of adverse cardiorenal outcomes have been developed using routinely collected data from a US healthcare claims database. The models may have potential for broad clinical applications in patient care.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes [J].
Bakris, George L. ;
Agarwal, Rajiv ;
Anker, Stefan D. ;
Pitt, Bertram ;
Ruilope, Luis M. ;
Rossing, Peter ;
Kolkhof, Peter ;
Nowack, Christina ;
Schloemer, Patrick ;
Joseph, Amer ;
Filippatos, Gerasimos .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (23) :2219-2229
[2]   Burden and Outcomes of Heart Failure Hospitalizations in Adults With Chronic Kidney Disease [J].
Bansal, Nisha ;
Zelnick, Leila ;
Bhat, Zeenat ;
Dobre, Mirela ;
He, Jiang ;
Lash, James ;
Jaar, Bernard ;
Mehta, Rupal ;
Raj, Dominic ;
Rincon-Choles, Hernan ;
Saunders, Milda ;
Schrauben, Sarah ;
Weir, Matthew ;
Wright, Julie ;
Go, Alan S. ;
Appel, Lawrence J. ;
Feldman, Harold, I ;
Go, Alan S. ;
He, Jiang ;
Lash, James P. ;
Rao, Panduranga S. ;
Rahman, Mahboob ;
Townsend, Raymond R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (21) :2691-2700
[3]   Computational and Human Intelligence Methods for Constructing Practical Risk Prediction Models: An Application to Cardio-Renal Outcomes in Non-Diabetic CKD Patients [J].
Bauer, Chris ;
Schuchhardt, Johannes ;
Vaitsiakhovich, Tatsiana ;
Kleinjung, Frank .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
[4]   Good practices for real-world data studies of treatment and/or comparative effectiveness: Recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making [J].
Berger, Marc L. ;
Sox, Harold ;
Willke, Richard J. ;
Brixner, Diana L. ;
Eichler, Hans-Georg ;
Goettsch, Wim ;
Madigan, David ;
Makady, Amr ;
Schneeweiss, Sebastian ;
Tarricone, Rosanna ;
Wang, Shirley V. ;
Watkins, John ;
Daniel Mullins, C. .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 (09) :1033-1039
[5]   Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].
Bikbov, Boris ;
Purcell, Carrie ;
Levey, Andrew S. ;
Smith, Mari ;
Abdoli, Amir ;
Abebe, Molla ;
Adebayo, Oladimeji M. ;
Afarideh, Mohsen ;
Agarwal, Sanjay Kumar ;
Agudelo-Botero, Marcela ;
Ahmadian, Elham ;
Al-Aly, Ziyad ;
Alipour, Vahid ;
Almasi-Hashiani, Amir ;
Al-Raddadi, Rajaa M. ;
Alvis-Guzman, Nelson ;
Amini, Saeed ;
Andrei, Tudorel ;
Andrei, Catalina Liliana ;
Andualem, Zewudu ;
Anjomshoa, Mina ;
Arabloo, Jalal ;
Ashagre, Alebachew Fasil ;
Asmelash, Daniel ;
Ataro, Zerihun ;
Atout, Maha Moh'd Wahbi ;
Ayanore, Martin Amogre ;
Badawi, Alaa ;
Bakhtiari, Ahad ;
Ballew, Shoshana H. ;
Balouchi, Abbas ;
Banach, Maciej ;
Barquera, Simon ;
Basu, Sanjay ;
Bayih, Mulat Tirfie ;
Bedi, Neeraj ;
Bello, Aminu K. ;
Bensenor, Isabela M. ;
Bijani, Ali ;
Boloor, Archith ;
Borzi, Antonio M. ;
Camera, Luis Alberto ;
Carrero, Juan J. ;
Carvalho, Felix ;
Castro, Franz ;
Catala-Lopez, Ferran ;
Chang, Alex R. ;
Chin, Ken Lee ;
Chung, Sheng-Chia ;
Cirillo, Massimo .
LANCET, 2020, 395 (10225) :709-733
[6]   Epidemiology and risk profile of heart failure [J].
Bui, Anh L. ;
Horwich, Tamara B. ;
Fonarow, Gregg C. .
NATURE REVIEWS CARDIOLOGY, 2011, 8 (01) :30-41
[7]   Ant colony optimization -: Artificial ants as a computational intelligence technique [J].
Dorigo, Marco ;
Birattari, Mauro ;
Stuetzle, Thomas .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (04) :28-39
[8]   Risk Prediction for Early CKD in Type 2 Diabetes [J].
Dunkler, Daniela ;
Gao, Peggy ;
Lee, Shun Fu ;
Heinze, Georg ;
Clase, Catherine M. ;
Tobe, Sheldon ;
Teo, Koon K. ;
Gerstein, Hertzel ;
Mann, Johannes F. E. ;
Oberbauer, Rainer .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 10 (08) :1371-1379
[9]   The German Chronic Kidney Disease (GCKD) study: design and methods [J].
Eckardt, Kai-Uwe ;
Baerthlein, Barbara ;
Baid-Agrawal, Seema ;
Beck, Andreas ;
Busch, Martin ;
Eitner, Frank ;
Ekici, Arif B. ;
Floege, Juergen ;
Gefeller, Olaf ;
Haller, Hermann ;
Hilge, Robert ;
Hilgers, Karl F. ;
Kielstein, Jan T. ;
Krane, Vera ;
Koettgen, Anna ;
Kronenberg, Florian ;
Oefner, Peter ;
Prokosch, Hans-Ulrich ;
Reis, Andre ;
Schmid, Matthias ;
Schaeffner, Elke ;
Schultheiss, Ulla T. ;
Seuchter, Susanne A. ;
Sitter, Thomas ;
Sommerer, Claudia ;
Walz, Gerd ;
Wanner, Christoph ;
Wolf, Gunter ;
Zeier, Martin ;
Titze, Stephanie .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2012, 27 (04) :1454-1460
[10]   Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events in patients with diabetes and overt nephropathy: a meta-analysis of randomised controlled trials [J].
Fan Shunan ;
Yuan Jiqing ;
Dong Xue .
JOURNAL OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM, 2018, 19 (04)