Dynamics of a Nonlocal Diffusive and Infectious SIR Epidemic Model with Double Free Boundaries

被引:0
作者
Bao, Hanxiang [1 ]
Wang, Mingxin [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal diffusion SIR model; Nonlocal infectious; Free boundaries; Basic reproduction numbers; Spreading and vanishing; Long time behaviors;
D O I
10.1007/s12346-025-01234-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a nonlocal diffusive SIR epidemic model with nonlocal infectious and double free boundaries, which can be used to describe the spreading of infectious diseases. This model is a strongly coupled nonlocal diffusion system in some sense. We mainly study criteria for spreading and vanishing, and the long time behaviors. In addition to the usual Basic Reproduction NumberR0=k(a-beta)b(a+gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0=\frac{k(a-\beta )}{b(a+\gamma )}$$\end{document}, we also discover another number R0ka-beta b,<middle dot>,(-h0,h0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0\left( k\frac{a-\beta }{b}, \cdot , (-h_0,h_0)\right) $$\end{document}, and find that these two numbers play a crucial role in determining both spreading and vanishing.
引用
收藏
页数:26
相关论文
共 20 条
  • [1] Bao H.X., 2024, arXiv
  • [2] Mathematical analysis of a vaccination epidemic model with nonlocal diffusion
    Bentout, Soufiane
    Djilali, Salih
    Kuniya, Toshikazu
    Wang, Jinliang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10970 - 10994
  • [3] On the definition and the properties of the principal eigenvalue of some nonlocal operators
    Berestycki, Henri
    Coville, Jerome
    Vo, Hoang-Hung
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (10) : 2701 - 2751
  • [4] The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries
    Cao, Jia-Feng
    Du, Yihong
    Li, Fang
    Li, Wan-Tong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) : 2772 - 2814
  • [5] DYNAMICS OF A NONLOCAL SIS EPIDEMIC MODEL WITH FREE BOUNDARY
    Cao, Jia-Feng
    Li, Wan-Tong
    Yang, Fei-Ying
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 247 - 266
  • [6] A nonlocal SIR epidemic problem with double free boundaries
    Chen, Yujuan
    Wang, Mingxin
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 133
  • [7] On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators
    Coville, Jerome
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) : 2921 - 2953
  • [8] Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity
    Coville, Jerome
    Davila, Juan
    Martinez, Salome
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) : 1693 - 1709
  • [9] Generalities on a Delayed Spatiotemporal Host-Pathogen Infection Model with Distinct Dispersal Rates
    Djilali, Salih
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2024, 19
  • [10] TWO SPECIES NONLOCAL DIFFUSION SYSTEMS WITH FREE BOUNDARIES
    Du, Yihong
    Wang, Mingxin
    Zhao, Meng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (03) : 1127 - 1162