Optimal Consensus Control for Switching Uncertain Multiagent Systems Using Model Reference Control and Reinforcement Learning

被引:0
作者
He, Wenpeng [1 ,2 ,3 ]
Chen, Xin [1 ,2 ,3 ]
Sun, Yipu [1 ,2 ,3 ]
机构
[1] China Univ Geosci, Sch Automat, 388 Lumo Rd, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat Co, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, 388 Lumo Rd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
optimal consensus; uncertain multiagent system; switching communication graph; equivalent input disturbance; EQUIVALENT-INPUT-DISTURBANCE; GRAPHICAL GAMES; REJECTION; SYNCHRONIZATION; STABILITY; MRAC;
D O I
10.20965/jaciii.2025.p0256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the optimal consensus problem in uncertain switching multiagent systems. The inherent uncertainty and time-varying structure of local tracking error system render conventional methods ineffective for deriving optimal control protocols. To overcome these challenges, we introduce a reference model for each agent and construct a modified augmented local tracking error (ALTE) system. This approach transforms the optimal consensus problem into two sub-problems: 1) model reference control (MRC) between agents and their reference models; 2) distributed optimal stabilization of the modified ALTE system. We propose a new control scheme that combines filtered tracking error with equivalent input disturbance method to achieve MRC. To realize distributed optimal stabilization of the modified ALTE, we introduce a deep deterministic policy gradient method based on value iteration. Through theoretical analysis, we demonstrate that the multiagent system achieves a near Nash equilibrium, which is further validated by numerical simulation.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 32 条
[1]   Multi-agent discrete-time graphical games and reinforcement learning solutions [J].
Abouheaf, Mohammed I. ;
Lewis, Frank L. ;
Vamvoudakis, Kyriakos G. ;
Haesaert, Sofie ;
Babuska, Robert .
AUTOMATICA, 2014, 50 (12) :3038-3053
[2]   Neural net based MRAC for a class of nonlinear plants [J].
Ahmed, MS .
NEURAL NETWORKS, 2000, 13 (01) :111-124
[3]   Distributed synchronisation control of unknown nonlinear systems with an active leader [J].
Chen, Xin ;
Fu, Hao .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (05) :1396-1408
[4]   Coordination of Electric Vehicle Charging Through Multiagent Reinforcement Learning [J].
Da Silva, Felipe Leno ;
Nishida, Cyntia E. H. ;
Roijers, Diederik M. ;
Costa, Anna H. Reali .
IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) :2347-2356
[5]   Data-Based Optimal Synchronization Control for Discrete-Time Nonlinear Heterogeneous Multiagent Systems [J].
Fu, Hao ;
Chen, Xin ;
Wang, Wei ;
Wu, Min .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) :2477-2490
[6]   MRAC for unknown discrete-time nonlinear systems based on supervised neural dynamic programming [J].
Fu, Hao ;
Chen, Xin ;
Wang, Wei ;
Wu, Min .
NEUROCOMPUTING, 2020, 384 :130-141
[7]   Massive Multiagent-Based Urban Traffic Simulation with Fine-Grained Behavior Models [J].
Hattori, Hiromitsu ;
Nakajima, Yuu ;
Yamane, Shohei .
JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (02) :233-239
[8]   Adaptive distributed observer for general linear leader systems over periodic switching digraphs [J].
He, Changran ;
Huang, Jie .
AUTOMATICA, 2022, 137
[9]   Distributed Finite-Time Consensus Algorithm for Multiagent Systems via Aperiodically Intermittent Protocol [J].
He, Shengchao ;
Liu, Xiangdong ;
Lu, Pingli ;
Du, Changkun ;
Liu, Haikuo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (07) :3229-3233
[10]   Data-Driven Optimal Consensus Control for Switching Multiagent Systems via Joint Communication Graph [J].
He, Wenpeng ;
Chen, Xin ;
Zhang, Menglin ;
Sun, Yipu ;
Sekiguchi, Akinori ;
She, Jinhua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) :5959-5968