共 39 条
- [1] Ahmed S., Mahbub A., Rayhan F., Jani R., Shatabda S., Farid D.M., Hybrid methods for class imbalance learning employing bagging with sampling techniques, In: 2017 2Nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, pp. 1-5, (2017)
- [2] Bennin K.E., Keung J., Phannachitta P., Monden A., Mensah S., MAHAKIL: diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction, IEEE Trans Softw Eng, 44, 6, pp. 534-550, (2018)
- [3] Blaszczynski J., Deckert M., Stefanowski J., Wilk S., Integrating selective pre-processing of imbalanced data with ivotes ensemble, Rough Sets and Current Trends in Computing, 6086, (2010)
- [4] Chamseddine E., Mansouri N., Soui M., Abed M., Handling class imbalance in COVID-19 chest X-ray images classification: using SMOTE and weighted loss, Appl Soft Comput, 129, (2022)
- [5] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., SMOTE: synthetic minority over-sampling technique, J Artif Int, 16, pp. 321-357, (2002)
- [6] Chawla N.V., Lazarevic A., Hall L.O., Bowyer K.W., SMOTEBoost: improving prediction of the minority class in boosting, Knowl Discov Databases, 2838, pp. 107-119, (2003)
- [7] Chen L., Fang B., Shang Z., Et al., Tackling class overlap and imbalance problems in software defect prediction, Softw Qual J, 26, pp. 97-125, (2018)
- [8] Estabrooks A., Et al., A multiple resampling method for learning from imbalanced data sets, Comput Intell, 20, pp. 18-36, (2004)
- [9] Galar M., Fernandez A., Barrenechea E., Bustince H., Herrera F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Trans Syst Man Cybern, 42, 4, pp. 463-484, (2012)
- [10] Gong L., Jiang S., Bo L., Jiang L., Qian J., A novel class-imbalance learning approach for both within-project and cross-project defect prediction, IEEE Trans Reliab, 69, 1, pp. 40-54, (2020)