scMFG: a single-cell multi-omics integration method based on feature grouping

被引:0
|
作者
Ma, Litian [1 ]
Liu, Jingtao [1 ]
Sun, Wei [2 ]
Zhao, Chenguang [2 ]
Yu, Liang [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
[2] Fourth Mil Med Univ, Xijing Hosp, Dept Rehabil Med, Xian 710032, Peoples R China
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
关键词
Single-cell; Multi-omics; Feature grouping; Integration; RNA; HETEROGENEITY; SELECTION;
D O I
10.1186/s12864-025-11319-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundRecent advancements in methodologies and technologies have enabled the simultaneous measurement of multiple omics data, which provides a comprehensive understanding of cellular heterogeneity. However, existing methods have limitations in accurately identifying cell types while maintaining model interpretability, especially in the presence of noise.MethodsWe propose a novel method called scMFG, which leverages feature grouping and group integration techniques for the integration of single-cell multi-omics data. By organizing features with similar characteristics within each omics layer through feature grouping. Furthermore, scMFG ensures a consistent feature grouping approach across different omics layers, promoting comparability of diverse data types. Additionally, scMFG incorporates a matrix factorization-based approach to enable the integrated results remain interpretable.ResultsWe comprehensively evaluated scMFG's performance on four complex real-world datasets generated using diverse sequencing technologies, highlighting its robustness in accurately identifying cell types. Notably, scMFG exhibited superior performance in deciphering cellular heterogeneity at a finer resolution compared to existing methods when applied to simulated datasets. Furthermore, our method proved highly effective in identifying rare cell types, showcasing its robust performance and suitability for detecting low-abundance cellular populations. The interpretability of scMFG was successfully validated through its specific association of outputs with specific cell types or states observed in the neonatal mouse cerebral cortices dataset. Moreover, we demonstrated that scMFG is capable of identifying cell developmental trajectories even in datasets with batch effects.ConclusionsOur work presents a robust framework for the analysis of single-cell multi-omics data, advancing our understanding of cellular heterogeneity in a comprehensive and interpretable manner.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [2] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [3] Benchmarking algorithms for single-cell multi-omics prediction and integration
    Hu, Yinlei
    Wan, Siyuan
    Luo, Yuanhanyu
    Li, Yuanzhe
    Wu, Tong
    Deng, Wentao
    Jiang, Chen
    Jiang, Shan
    Zhang, Yueping
    Liu, Nianping
    Yang, Zongcheng
    Chen, Falai
    Li, Bin
    Qu, Kun
    NATURE METHODS, 2024, 21 (11) : 2182 - +
  • [4] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    Nature Communications, 14
  • [6] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stanojevic, Stefan
    Li, Yijun
    Ristivojevic, Aleksandar
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 836 - 849
  • [7] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [8] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stefan Stanojevic
    Yijun Li
    Aleksandar Ristivojevic
    Lana X.Garmire
    Genomics,Proteomics & Bioinformatics, 2022, (05) : 836 - 849
  • [9] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724
  • [10] Multi-omics integration in the age of million single-cell data
    Zhen Miao
    Benjamin D. Humphreys
    Andrew P. McMahon
    Junhyong Kim
    Nature Reviews Nephrology, 2021, 17 : 710 - 724