scMFG: a single-cell multi-omics integration method based on feature grouping

被引:0
|
作者
Ma, Litian [1 ]
Liu, Jingtao [1 ]
Sun, Wei [2 ]
Zhao, Chenguang [2 ]
Yu, Liang [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
[2] Fourth Mil Med Univ, Xijing Hosp, Dept Rehabil Med, Xian 710032, Peoples R China
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
关键词
Single-cell; Multi-omics; Feature grouping; Integration; RNA; HETEROGENEITY; SELECTION;
D O I
10.1186/s12864-025-11319-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundRecent advancements in methodologies and technologies have enabled the simultaneous measurement of multiple omics data, which provides a comprehensive understanding of cellular heterogeneity. However, existing methods have limitations in accurately identifying cell types while maintaining model interpretability, especially in the presence of noise.MethodsWe propose a novel method called scMFG, which leverages feature grouping and group integration techniques for the integration of single-cell multi-omics data. By organizing features with similar characteristics within each omics layer through feature grouping. Furthermore, scMFG ensures a consistent feature grouping approach across different omics layers, promoting comparability of diverse data types. Additionally, scMFG incorporates a matrix factorization-based approach to enable the integrated results remain interpretable.ResultsWe comprehensively evaluated scMFG's performance on four complex real-world datasets generated using diverse sequencing technologies, highlighting its robustness in accurately identifying cell types. Notably, scMFG exhibited superior performance in deciphering cellular heterogeneity at a finer resolution compared to existing methods when applied to simulated datasets. Furthermore, our method proved highly effective in identifying rare cell types, showcasing its robust performance and suitability for detecting low-abundance cellular populations. The interpretability of scMFG was successfully validated through its specific association of outputs with specific cell types or states observed in the neonatal mouse cerebral cortices dataset. Moreover, we demonstrated that scMFG is capable of identifying cell developmental trajectories even in datasets with batch effects.ConclusionsOur work presents a robust framework for the analysis of single-cell multi-omics data, advancing our understanding of cellular heterogeneity in a comprehensive and interpretable manner.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [2] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stanojevic, Stefan
    Li, Yijun
    Ristivojevic, Aleksandar
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 836 - 849
  • [3] Progress in single-cell multimodal sequencing and multi-omics data integration
    Wang, Xuefei
    Wu, Xinchao
    Hong, Ni
    Jin, Wenfei
    BIOPHYSICAL REVIEWS, 2024, 16 (01) : 13 - 28
  • [4] Multimodal deep learning approaches for single-cell multi-omics data integration
    Athaya, Tasbiraha
    Ripan, Rony Chowdhury
    Li, Xiaoman
    Hu, Haiyan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [5] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [6] Applications of single-cell multi-omics in liver cancer
    Peeters, Frederik
    Cappuyns, Sarah
    Pique-Gili, Marta
    Phillips, Gino
    Verslype, Chris
    Lambrechts, Diether
    Dekervel, Jeroen
    JHEP REPORTS, 2024, 6 (07)
  • [7] Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
    Xiao, Chuxi
    Chen, Yixin
    Meng, Qiuchen
    Wei, Lei
    Zhang, Xuegong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [8] Benchmarking algorithms for single-cell multi-omics prediction and integration
    Hu, Yinlei
    Wan, Siyuan
    Luo, Yuanhanyu
    Li, Yuanzhe
    Wu, Tong
    Deng, Wentao
    Jiang, Chen
    Jiang, Shan
    Zhang, Yueping
    Liu, Nianping
    Yang, Zongcheng
    Chen, Falai
    Li, Bin
    Qu, Kun
    NATURE METHODS, 2024, 21 (11) : 2182 - +
  • [9] Integration of single-cell multi-omics for gene regulatory network inference
    Hu, Xinlin
    Hu, Yaohua
    Wu, Fanjie
    Leung, Ricky Wai Tak
    Qin, Jing
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1925 - 1938
  • [10] Progress in single-cell multimodal sequencing and multi-omics data integration
    Xuefei Wang
    Xinchao Wu
    Ni Hong
    Wenfei Jin
    Biophysical Reviews, 2024, 16 : 13 - 28