Totally Geodesic Submanifolds and Polar Actions on Stiefel Manifolds

被引:0
作者
Gorodski, Claudio [1 ]
Kollross, Andreas [2 ]
Rodriguez-Vazquez, Alberto [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Stuttgart, Inst Geometrie & Topol, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
[3] Univ Libre Bruxelles, Dept Math, Blvd Triomphe,CP 218, B-1050 Brussels, Belgium
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Stiefel manifolds; Totally geodesic; Polar actions; Cohomogeneity one; SYMMETRIC-SPACES; CLASSIFICATION; COMPLEX;
D O I
10.1007/s12220-024-01855-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify totally geodesic submanifolds of the real Stiefel manifolds of orthogonal two-frames. We also classify polar actions on these Stiefel manifolds, specifically, we prove that the orbits of polar actions are lifts of polar actions on the corresponding Grassmannian. In the case of cohomogeneity one actions we are able to obtain a classification for all real, complex and quaternionic Stiefel manifolds of k-frames.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Compressing totally geodesic surfaces [J].
Leininger, CJ .
TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (03) :309-328
[22]   Rolling Stiefel Manifolds Equipped with α-Metrics [J].
Schlarb, Markus ;
Huper, Knut ;
Markina, Irina ;
Leite, Fatima Silva .
MATHEMATICS, 2023, 11 (21)
[23]   Products of Farey graphs are totally geodesic in the pants graph [J].
Taylor, Samuel J. ;
Zupan, Alexander .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2016, 8 (02) :287-311
[24]   THE CAYLEY TRANSFORM ON LIE GROUPS, SYMMETRIC SPACES AND STIEFEL MANIFOLDS [J].
Macias-Virgos, Enrique .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 63 (02) :143-160
[25]   On polar actions invariant solutions of semi-linear equations on manifolds [J].
Becerra, E. ;
Galvis, J. ;
Martinez, N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :769-781
[26]   On invariant submanifolds of Kenmotsu manifolds [J].
De, U. C. ;
Majhi, Pradip .
JOURNAL OF GEOMETRY, 2015, 106 (01) :109-122
[27]   Totally geodesic surfaces in the complex quadric [J].
Moruz, Marilena ;
Van der Veken, Joeri ;
Vrancken, Luc ;
Wijffels, Anne .
DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 :153-161
[28]   Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler SL(2, R) x SL(2, R) [J].
Anarella, Mateo ;
van der Veken, J. .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (05) :1922-1944
[29]   BEZIER SPLINES INTERPOLATION ON STIEFEL AND GRASSMANN MANIFOLDS [J].
Adouani, Ines ;
Samir, Chafik .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (06) :1554-1578
[30]   On the equivariant cohomology of rotation groups and Stiefel manifolds [J].
Kronholm, William .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (05) :1380-1387