Totally Geodesic Submanifolds and Polar Actions on Stiefel Manifolds

被引:0
作者
Gorodski, Claudio [1 ]
Kollross, Andreas [2 ]
Rodriguez-Vazquez, Alberto [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Stuttgart, Inst Geometrie & Topol, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
[3] Univ Libre Bruxelles, Dept Math, Blvd Triomphe,CP 218, B-1050 Brussels, Belgium
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Stiefel manifolds; Totally geodesic; Polar actions; Cohomogeneity one; SYMMETRIC-SPACES; CLASSIFICATION; COMPLEX;
D O I
10.1007/s12220-024-01855-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify totally geodesic submanifolds of the real Stiefel manifolds of orthogonal two-frames. We also classify polar actions on these Stiefel manifolds, specifically, we prove that the orbits of polar actions are lifts of polar actions on the corresponding Grassmannian. In the case of cohomogeneity one actions we are able to obtain a classification for all real, complex and quaternionic Stiefel manifolds of k-frames.
引用
收藏
页数:21
相关论文
共 50 条
[1]   TOTALLY GEODESIC SUBMANIFOLDS OF REGULAR SASAKIAN MANIFOLDS [J].
Murphy, Thomas .
OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (01) :125-132
[2]   Totally geodesic submanifolds in exceptional symmetric spaces [J].
Kollross, Andreas ;
Rodriguez-Vazquez, Alberto .
ADVANCES IN MATHEMATICS, 2023, 418
[3]   A classification of totally geodesic and totally umbilical Legendrian submanifolds of (κ, μ)-spaces [J].
Carriazo, Alfonso ;
Martin-Molina, Veronica ;
Vrancken, Luc .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (02) :173-185
[4]   MAXIMAL TOTALLY GEODESIC SUBMANIFOLDS AND INDEX OF SYMMETRIC SPACES [J].
Berndt, Jurgen ;
Olmos, Carlos .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 104 (02) :187-217
[5]   Totally geodesic submanifolds of a trans-Sasakian manifold [J].
De, Avik .
PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2013, 62 (04) :249-257
[6]   Polar manifolds and actions [J].
Grove, Karsten ;
Ziller, Wolfgang .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 11 (02) :279-313
[7]   TOTALLY GEODESIC SUBMANIFOLDS OF THE COMPLEX AND THE QUATERNIONIC 2-GRASSMANNIANS [J].
Klein, Sebastian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4927-4967
[8]   Horizontally homothetic harmonic morphisms and stability of totally geodesic submanifolds [J].
Yun, Gabjin ;
Choi, Gundon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) :493-511
[9]   Totally geodesic submanifolds in tangent bundle with g-natural metric [J].
Ewert-Krzemieniewski, Stanislaw .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
[10]   TOTALLY GEODESIC SUBMANIFOLDS OF THE EXCEPTIONAL RIEMANNIAN SYMMETRIC SPACES OF RANK 2 [J].
Klein, Sebastian .
OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (04) :1077-1157