MFC-PPI: protein-protein interaction prediction with multimodal feature fusion and contrastive learning

被引:0
作者
Zhang, Zhixin [1 ]
Zhang, Qunhao [1 ]
Xiao, Jun [1 ]
Ding, Shanyang [1 ]
Li, Zhen [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, 308 NingXia Rd, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Contrastive learning; Multimodal feature fusion; Graph neural networks; Protein-protein interactions;
D O I
10.1007/s11227-025-07076-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Protein-protein interactions (PPIs) are of critical importance in numerous biological processes and disease mechanisms, and the accurate prediction of PPIs is helpful in the comprehension of complex biological systems. In this paper, MFC-PPI, a PPI prediction model based on multimodal feature fusion and contrastive learning, is proposed. The sequential features, structural features, and PPI network features of proteins are extracted and combined for prediction. The contrastive learning is used to compare the subtle difference between the sequential features and structural features. In addition, the feature enhancement module is designed for feature fusion. The comparative experiments on SHS27k and SHS148k datasets demonstrates the excellent performance of MFC-PPI over other state-of-art methods under three partitioning strategies, Random, BFS, and DFS.
引用
收藏
页数:19
相关论文
共 36 条
[1]   Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine [J].
Ahmed, Zeeshan ;
Mohamed, Khalid ;
Zeeshan, Saman ;
Dong, Xinqi .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
[2]   MM-StackEns: A new deep multimodal stacked generalization approach for protein-protein interaction prediction [J].
Albu, Alexandra-Ioana ;
Bocicor, Maria-Iuliana ;
Czibula, Gabriela .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
[3]   Machine learning in preclinical drug discovery [J].
Catacutan, Denise B. ;
Alexander, Jeremie ;
Arnold, Autumn ;
Stokes, Jonathan M. .
NATURE CHEMICAL BIOLOGY, 2024, 20 (08) :960-973
[4]  
Chen JY, 2021, Arxiv, DOI arXiv:2107.01152
[5]   Multifaceted protein-protein interaction prediction based on Siamese residual RCNN [J].
Chen, Muhao ;
Ju, Chelsea J. -T. ;
Zhou, Guangyu ;
Chen, Xuelu ;
Zhang, Tianran ;
Chang, Kai-Wei ;
Zaniolo, Carlo ;
Wang, Wei .
BIOINFORMATICS, 2019, 35 (14) :I305-I314
[6]  
Chen T., 2020, PMLR, P1597
[7]   Hierarchical graph learning for protein-protein interaction [J].
Gao, Ziqi ;
Jiang, Chenran ;
Zhang, Jiawen ;
Jiang, Xiaosen ;
Li, Lanqing ;
Zhao, Peilin ;
Yang, Huanming ;
Huang, Yong ;
Li, Jia .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Using support vector machine combined with auto covariance to predict proteinprotein interactions from protein sequences [J].
Guo, Yanzhi ;
Yu, Lezheng ;
Wen, Zhining ;
Li, Menglong .
NUCLEIC ACIDS RESEARCH, 2008, 36 (09) :3025-3030
[9]   Predicting protein-protein interactions through sequence-based deep learning [J].
Hashemifar, Somaye ;
Neyshabur, Behnam ;
Khan, Aly A. ;
Xu, Jinbo .
BIOINFORMATICS, 2018, 34 (17) :802-810
[10]   Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry [J].
Ho, Y ;
Gruhler, A ;
Heilbut, A ;
Bader, GD ;
Moore, L ;
Adams, SL ;
Millar, A ;
Taylor, P ;
Bennett, K ;
Boutilier, K ;
Yang, LY ;
Wolting, C ;
Donaldson, I ;
Schandorff, S ;
Shewnarane, J ;
Vo, M ;
Taggart, J ;
Goudreault, M ;
Muskat, B ;
Alfarano, C ;
Dewar, D ;
Lin, Z ;
Michalickova, K ;
Willems, AR ;
Sassi, H ;
Nielsen, PA ;
Rasmussen, KJ ;
Andersen, JR ;
Johansen, LE ;
Hansen, LH ;
Jespersen, H ;
Podtelejnikov, A ;
Nielsen, E ;
Crawford, J ;
Poulsen, V ;
Sorensen, BD ;
Matthiesen, J ;
Hendrickson, RC ;
Gleeson, F ;
Pawson, T ;
Moran, MF ;
Durocher, D ;
Mann, M ;
Hogue, CWV ;
Figeys, D ;
Tyers, M .
NATURE, 2002, 415 (6868) :180-183