A lightweight weed detection model for cotton fields based on an improved YOLOv8n

被引:0
|
作者
Wang, Jun [1 ]
Qi, Zhengyuan [1 ]
Wang, Yanlong [1 ]
Liu, Yanyang [1 ]
机构
[1] Gansu Agr Univ, Coll Informat Sci & Technol, Lanzhou 730070, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Object detection; Weed detection; YOLOv8; Deep learning; Lightweight model; Cotton; MANAGEMENT; IMPACT;
D O I
10.1038/s41598-024-84748-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In modern agriculture, the proliferation of weeds in cotton fields poses a significant threat to the healthy growth and yield of crops. Therefore, efficient detection and control of cotton field weeds are of paramount importance. In recent years, deep learning models have shown great potential in the detection of cotton field weeds, achieving high-precision weed recognition. However, existing deep learning models, despite their high accuracy, often have complex computations and high resource consumption, making them difficult to apply in practical scenarios. To address this issue, developing efficient and lightweight detection methods for weed recognition in cotton fields is crucial for effective weed control. This study proposes the YOLO-Weed Nano algorithm based on the improved YOLOv8n model. First, the Depthwise Separable Convolution (DSC) structure is used to improve the HGNetV2 network, creating the DS_HGNetV2 network to replace the backbone of the YOLOv8n model. Secondly, the Bidirectional Feature Pyramid Network (BiFPN) is introduced to enhance the feature fusion layer, further optimizing the model's ability to recognize weed features in complex backgrounds. Finally, a lightweight detection head, LiteDetect, suitable for the BiFPN structure, is designed to streamline the model structure and reduce computational load. Experimental results show that compared to the original YOLOv8n model, YOLO-Weed Nano improves mAP by 1%, while reducing the number of parameters, computation, and weights by 63.8%, 42%, and 60.7%, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Lightweight coal mine conveyor belt foreign object detection based on improved Yolov8n
    Jierui Ling
    Zhibo Fu
    Xinpeng Yuan
    Scientific Reports, 15 (1)
  • [22] Lightweight Sewer Pipe Crack Detection Method Based on Amphibious Robot and Improved YOLOv8n
    Lv, Zhenming
    Dong, Shaojiang
    He, Jingyao
    Hu, Bo
    Liu, Qingyi
    Wang, Honghang
    SENSORS, 2024, 24 (18)
  • [23] Lightweight Algorithm for Rail Fastener Status Detection Based on YOLOv8n
    Zhang, Xingsheng
    Shen, Benlan
    Li, Jincheng
    Ruan, Jiuhong
    ELECTRONICS, 2024, 13 (17)
  • [24] ESFD-YOLOv8n: Early Smoke and Fire Detection Method Based on an Improved YOLOv8n Model
    Mamadaliev, Dilshodjon
    Touko, Philippe Lyonel Mbouembe
    Kim, Jae-Ho
    Kim, Suk-Chan
    FIRE-SWITZERLAND, 2024, 7 (09):
  • [25] Traffic Sign Detection Algorithm Based on Improved YOLOv8n
    Peng, Jun
    Mou, Biao
    Jin, Shangzhu
    Lu, Yiyi
    Li, Chenxi
    Chen, Wei
    Jiang, Aiping
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [26] Improved Road Damage Detection Algorithm Based on YOLOv8n
    Li, Xudong
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (11) : 1720 - 1730
  • [27] LH-YOLO: A Lightweight and High-Precision SAR Ship Detection Model Based on the Improved YOLOv8n
    Cao, Qi
    Chen, Hang
    Wang, Shang
    Wang, Yongqiang
    Fu, Haisheng
    Chen, Zhenjiao
    Liang, Feng
    REMOTE SENSING, 2024, 16 (22)
  • [28] LightYOLO: Lightweight model based on YOLOv8n for defect detection of ultrasonically welded wire terminations
    Xu, Jianshu
    Zhao, Lun
    Ren, Yu
    Li, Zhigang
    Abbas, Zeshan
    Zhang, Lan
    Islam, Shafiqul
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 60
  • [29] Lightweight and Efficient Tiny-Object Detection Based on Improved YOLOv8n for UAV Aerial Images
    Yue, Min
    Zhang, Liqiang
    Huang, Juan
    Zhang, Haifeng
    DRONES, 2024, 8 (07)
  • [30] YOLOv8-ECFS: A lightweight model for weed species detection in soybean fields
    Niu, Wendong
    Lei, Xingpeng
    Li, Hao
    Wu, Hongqi
    Hu, Fenshan
    Wen, Xiaoxia
    Zheng, Decong
    Song, Haiyan
    CROP PROTECTION, 2024, 184